# 数论例题选讲(题面版)
数论例题选讲(题面版)
(都是水题,PJ难度)
题目一:[CQOI2007]余数求和]
题意:求\(\sum_{i=1}^k n \mod i\) (n,k<=10^9)
https://www.luogu.org/problemnew/show/2261
题目二:[hdu2866][Special Prime]
https://vjudge.net/problem/HDU-2866
题意:在区间[2,L]内,有多少个素数p,满足方程\(n^3+n^2p=m^3\)有解。\((l<=10^6)\)
题目三:
http://poj.openjudge.cn/practice/1046/
题意:给定b,求最大的a,使\(a(a+b)=m^2\)有解,\(b<=10^9,T<=10^3\)
题目四:[[bzoj4403]序列统计]
(http://www.lydsy.com/JudgeOnline/problem.php?id=4403)
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对106+3取模的结果。(N,L,R<=109)
题目五:
http://poj.org/problem?id=2480
题意:求\(\sum_{i=1}^n gcd(i,n),n<=10^9\)
题目六:[[JSOI2008]球形空间产生器]
(http://www.lydsy.com/JudgeOnline/problem.php?id=1013)
n维空间内,有一个球体,给你球上n+1个点的坐标,求球的圆心。
题目七:[[HNOI2017]礼物]
(https://www.luogu.org/problemnew/show/3723)
有两个序列\(a_i,b_i\)需要旋转序列\(b_i\)使得\(\sum_{i=1}(a_i-b_i+C)^2\)最小。
题目八:[[ZJOI2014]力]
(https://www.luogu.org/problemnew/show/P3338)
给出n个数qi,给出Fj的定义如下:
令Ei=Fi/qi,求Ei.
题目九::[[bzoj2440][中山市选2011]完全平方数]
(http://www.lydsy.com/JudgeOnline/problem.php?id=2440)
求第k个不是完全平方数(不包括1)倍数的数.(k<=10^9,多组数据)
题目十:[[bzoj4591]超能粒子炮改]
(http://www.lydsy.com/JudgeOnline/problem.php?id=4591)
求$\sum_{i=0}^k C(n,i) \mod 2333 $(n,k<=10^18)
题目十一:[[bzoj2301][HAOI2011] Problem B]
(http://www.lydsy.com/JudgeOnline/problem.php?id=2301)
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。(都小于等于50000)
题目十二:[[bzoj2154]Crash的数字表格]
(http://www.lydsy.com/JudgeOnline/problem.php?id=2154)
求\(\sum_{i=1}^n\sum_{j=1}^m lcm(i,j)\),n,m<=10^7
题目十三:[[bzoj3994][SDOI2015]约数个数和]
(http://www.lydsy.com/JudgeOnline/problem.php?id=3994)
令d(x)代表x的约数个数和。
求\(\sum_{i=1}^n\sum_{j=1}^m d(ij)\),n,m,t<=50000。
题目十四:[[bzoj4816][Sdoi2017]数字表格]
(http://www.lydsy.com/JudgeOnline/problem.php?id=4816)
\(\prod_{i=1}^n \prod_{j=1}^m f[gcd(i,j)],f_i为fibonacci数列,f[1]=f[2]=1\)
T<=1000,n,m<=10^6
题目十五:[51nod 1239]欧拉函数之和
(https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239)
\(\sum_{i=1}^n \varphi(i)\),n<=10^10
题目十六:[51nod 1220 约数之和]
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1220
令d(x)为x的约数之和
\(\sum_{i=1}^n\sum_{j=1}^n d(ij)\)
n<=10^9
题目十七:[51nod 1222]最小公倍数计数
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1222
输出最小公倍数在[a,b]之间的无序二元组(x,y)(x<=y)的个数。
a,b<=10^11
题目十八:[51nod 1227] 平均最小公倍数
https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1227
\(A(n)={\sum_{i=1}^n lcm(i,n) \over n}\)
求\(\sum_{i=a}^b A(i)\)
a,b<=10^9