洛谷P1868 饥饿的奶牛

题目描述

有一条奶牛冲出了围栏,来到了一处圣地(对于奶牛来说),上面用牛语写着一段文字。

现用汉语翻译为:

\(N\)个区间,每个区间\([x,y]\)表示提供的\(x \dots y\)\(y-x+1\)堆优质牧草。你可以选择任意区间但不能有重复的部分。

对于奶牛来说,自然是吃的越多越好,然而奶牛智商有限,现在请你帮助他。

输入格式

第一行,\(N\),如题

接下来\(N\)行,每行一个数\(x\)\(y\)

输出格式

一个数,最多能吃到的牧草堆数

输入输出样例

输入 #1

3
1 3
7 8
3 4

输出 #1

3
1 3
7 8
3 4

数据范围

\[1 \le n \le 1.5 \times 10^5 \\\\0 \le x \le y \le 3 \times 10^6 \]


解题报告

题意理解

就是给你一些区间,要求选择的区间包含以下条件.

  1. 选取区间总长度最大
  2. 选取的区间之间不得用重叠部分,包括区间左右端点部分

算法解析

首先这道题目的数据范围,比较具有特色,让人不难想到和线性复杂度的算法挂上钩.

然后因为具有,明显的最值性质,我们不难设置这道题目的算法为,线性DP

我们接着考虑,如何进行,动态规划的流程


状态设计

解决一道动态规划的题目,最主要的就是状态设计状态转移

一个个区间,都包含了\([l,r]\),因此我们可以设置.

每一个点,作为分段点

因此,我们得出了.

\[f[i]表示[1,i]区间的最大利润 \]


状态转移

假如说,我们现在位于\(i\)这个节点处.

那么对于这个点而言,显然包含它的区间的右端点一定为\(i\)

换种表达为

\[[s,i]为包含这个端点的区间 \]

当然\(s\)是属于一类集合,也就是,所有右端点为\(i\)的区间.

因此我们不难推导出转移方程.

\[f[i]=f[i-1] \quad 不选择当前任何一个区间 \\\\f[i]=max(f[i],f[s_j]+(i-s_j+1)) \quad 选择[s_j,i]这个区间 \\\\i-s_j+1为该区间的利润 \]


算法解析

#include <bits/stdc++.h>
using namespace std;
const int M=3000000+10;
vector<int> g[M];
int f[M],n,m,ans,r;
inline void init()
{
	scanf("%d",&n);
	for(int i=1; i<=n; i++)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		r=max(r,b);//找到最大右区间
		g[b].push_back(a);//记录区间[a,b]
	}
	for(int i=1; i<=r; i++)//当前区间[1,i]
	{
		f[i]=f[i-1];//如果本次不选择任何区间,就是这样
		for(int s:g[i])//找到以当前点作为终点的区间
			f[i]=max(f[i],f[s-1]+(i-s+1));//s表示这个区间的左端点,那么就是表示选择这个区间s
		//[s,i]表示本次区间,那么他可以带来的代价为(s-i+1),
	}
	printf("%d\n",f[r]);
}
signed main()
{
	init();
	return 0;
}
posted @ 2019-11-05 22:22  秦淮岸灯火阑珊  阅读(354)  评论(0编辑  收藏  举报