爬取全部的校园新闻

作业来源于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/3002

1.从新闻url获取点击次数,并整理成函数

  • newsUrl
  • newsId(re.search())
  • clickUrl(str.format())
  • requests.get(clickUrl)
  • re.search()/.split()
  • str.lstrip(),str.rstrip()
  • int
  • 整理成函数
  • 获取新闻发布时间及类型转换也整理成函数

2.从新闻url获取新闻详情: 字典,anews

3.从列表页的url获取新闻url:列表append(字典) alist

4.生成所页列表页的url并获取全部新闻 :列表extend(列表) allnews

*每个同学爬学号尾数开始的10个列表页

5.设置合理的爬取间隔

import time

import random

time.sleep(random.random()*3)

6.用pandas做简单的数据处理并保存

保存到csv或excel文件 

newsdf.to_csv(r'F:\duym\爬虫\gzccnews.csv')

完整代码:

import requests
from bs4 import BeautifulSoup
from datetime import datetime
import re
import pandas as pd
import time
import random

# 获取点击次数
def clickCount(url):
    newsId = re.search('/(\d+).html', url).groups(0)[0]
    timeUrl='http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(newsId)
    clickTime=re.findall("\d+",requests.get(timeUrl).text.split(';')[3])[0]
    return clickTime

#获取新闻时间
def newsDateTime(head):
    date=head[0][5:]
    time=head[1]
    format='%Y-%m-%d %H:%M:%S'
    return datetime.strptime(date+" "+time,format)

#获取新闻信息
def anews(url):
    newsDetail={}
    get=requests.get(url)
    get.encoding='utf-8'
    soup=BeautifulSoup(get.text,'html.parser')
    newsDetail['title']=soup.select('.show-title')[0].text; # 新闻题目
    head=soup.select('.show-info')[0].text.split()
    newsDetail['datetime']=newsDateTime(head) # 新闻时间
    newsDetail['clickTime']=clickCount(url) # 点击次数
    newsDetail['content'] = soup.select('.show-content')[0].text # 点击内容
    newsDetail['url']=url
    return newsDetail


#获取新闻列表页中的新闻url
def alist(listUrl):
    get=requests.get(listUrl)
    get.encoding='utf-8'
    soup=BeautifulSoup(get.text,'html.parser')
    newsList=[]
    for news in soup.select('li'):
        if len(news.select('.news-list-title'))>0:
            newsUrl=news.select('a')[0]['href']
            newsList.append(newsUrl)
    return newsList

#爬取64至74页的数据
url=[]
for i in range(64,74):
    url.extend(alist('http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'.format(i)))
allnews=[];
for i in url:
    allnews.append(anews(i))

#保存文件
pd.Series(allnews)
newsdf=pd.DataFrame(allnews)
newsdf.to_csv('news.csv',encoding='utf-8')

#设置合理的爬取间隔
for i in range(5):
    time.sleep(random.random()*3)
    print(newsdf)

效果展示:

 

posted on 2019-04-15 15:14  hyf751190951  阅读(138)  评论(0编辑  收藏  举报

导航