古越剑箫

学习是一种习惯

  :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: :: 管理 ::

前言

在大型分布式集群系统中由于日志是分布在不同服务器上,在排错过程中需要登录不同服务器grep | tail  查看日志是非常不方便,所以需要统一的日志管理平台聚合收集日志。比如阿里的sls(收费产品)…

但是一般实际开发过程中存在4套环境,dev(开发),test(测试),pre(预发验证),和prod(生产)。如果你的生产环境使用的是全套云服务且忽略成本,那你可以直接使用云服务厂商的日志组件。单如果你想节约成本,有没有不收费又好用的日志组件呢?有,ELK。

ELK是目前最流行的日志搜索组合组件,分别是Elasticsearch+Logstash+Kibana组件的简称,但是FileBeat又是什么玩意儿呢?请往下看。

本文环境:

Windows10+(Elasticsearch+Logstash+Kibana+FileBeat)7.8.0

为什么是windows环境,首先在搭建ELK环境过程中需要大量编写测试一些配置文件要不停调试,配置文件在(Linux | windows)环境是通用的,为了方便且更好的写好这篇文章,所以直接用我本地环境。本文以实战为主,拒绝花里胡巧没用的。ok,在动手搭建之前先简单介绍一下这4个组件到底是干什么的。

 

1、ElasticSearch

1、基于Lucene的分布式全文搜索引擎,2、基于rest接口,3、java语言开发,源码开放。从这3点可以看出,1、扩展方便为分布式而生,2、基于rest接口访问,无关对接语言,3、开源免费,研发实力足够强可以自己定制。es天生适合做大数据搜索存储

2、Logstash

Logstash是一个开源的服务器端数据处理管道,可以同时从多个数据源获取数据,并对其进行转换,然后将其发送到你最喜欢的“存储

简单解释下,这个组件是专门收集日志,并且对日志进行加工处理格式化,然后分发到你指定的地方(mysql,mq,nosql)的一个数据处理管道。基于java环境,但是特别占用内存

3、Kibana

开源的分析和可视化web平台,主要是和es搭配使用。

4、FileBeat

轻量级的日志采集工具,它和Logstash是同一个作者,因为Logstash太笨重且吃内存,所有作者新出了这么一个组件,FileBeat可以一个进程搜集服务器中所有指定的多个日志文件。Logstash做不到的,但是Logstash强大的数据处理和数据分发能力比FileBeat做的好。

 

下面是这4个组件简单的逻辑关系图

 

image

 

 

 

在搭建之前先下载这4个组件,https://www.elastic.co/cn/downloads/

 

1、启动Elasticsearch

 

如果你是Linux,请异步 这里

修改es配置文件

image

以下是我的配置:

# ======================== Elasticsearch Configuration =========================
#
# NOTE: Elasticsearch comes with reasonable defaults for most settings.
#       Before you set out to tweak and tune the configuration, make sure you
#       understand what are you trying to accomplish and the consequences.
#
# The primary way of configuring a node is via this file. This template lists
# the most important settings you may want to configure for a production cluster.
#
# Please consult the documentation for further information on configuration options:
# https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
# ---------------------------------- Cluster -----------------------------------
#
# Use a descriptive name for your cluster:
#
#cluster.name: my-application
#
# ------------------------------------ Node ------------------------------------
#
# Use a descriptive name for the node:
#节点,名字自定义
node.name: node-1
#
# Add custom attributes to the node:
#
#node.attr.rack: r1

# ----------------------------------- Paths ------------------------------------
#
# Path to directory where to store the data (separate multiple locations by comma):
#数据存储位置
path.data: E:\elk\elasticsearch-7.8.0-windows-x86_64\elasticsearch-7.8.0\data
#
# Path to log files:
#日志存储位置
path.logs: E:\elk\elasticsearch-7.8.0-windows-x86_64\elasticsearch-7.8.0\logs
#
# ----------------------------------- Memory -----------------------------------
#
# Lock the memory on startup:
#
#bootstrap.memory_lock: true
#
# Make sure that the heap size is set to about half the memory available
# on the system and that the owner of the process is allowed to use this
# limit.
#
# Elasticsearch performs poorly when the system is swapping the memory.
#
# ---------------------------------- Network -----------------------------------
#
# Set the bind address to a specific IP (IPv4 or IPv6):
#绑定访问的主机ip,0.0.0.0 是不限制
network.host: 0.0.0.0
#
# Set a custom port for HTTP:
#绑定的访问端口,默认就是9200
http.port: 9200
#
# For more information, consult the network module documentation.
#
# --------------------------------- Discovery ----------------------------------
#
# Pass an initial list of hosts to perform discovery when this node is started:
# The default list of hosts is ["127.0.0.1", "[::1]"]
#
#discovery.seed_hosts: ["host1", "host2"]
#
# Bootstrap the cluster using an initial set of master-eligible nodes:
#集群初始化的主节点,这个需要包含node.name 否则会报错 
cluster.initial_master_nodes: ["node-1"]
#
# For more information, consult the discovery and cluster formation module documentation.
#
# ---------------------------------- Gateway -----------------------------------
#
# Block initial recovery after a full cluster restart until N nodes are started:
#
#gateway.recover_after_nodes: 3
#
# For more information, consult the gateway module documentation.
#
# ---------------------------------- Various -----------------------------------
#
# Require explicit names when deleting indices:
#
#action.destructive_requires_name: true
# 这些是es-head需要的配置
http.cors.enabled: true 
http.cors.allow-origin: "*"
node.master: true
node.data: true

 

修改完成直接双击启动

 

image

 

浏览器访问如下,则启动成功。

image

 

2、Kibana启动

 

image 

 

修改Kibana配置文件

 

# Kibana is served by a back end server. This setting specifies the port to use.
#访问端口,默认就是5601
server.port: 5601

# Specifies the address to which the Kibana server will bind. IP addresses and host names are both valid values.
# The default is 'localhost', which usually means remote machines will not be able to connect.
# To allow connections from remote users, set this parameter to a non-loopback address.
server.host: "0.0.0.0"

# Enables you to specify a path to mount Kibana at if you are running behind a proxy.
# Use the `server.rewriteBasePath` setting to tell Kibana if it should remove the basePath
# from requests it receives, and to prevent a deprecation warning at startup.
# This setting cannot end in a slash.
#server.basePath: ""

# Specifies whether Kibana should rewrite requests that are prefixed with
# `server.basePath` or require that they are rewritten by your reverse proxy.
# This setting was effectively always `false` before Kibana 6.3 and will
# default to `true` starting in Kibana 7.0.
#server.rewriteBasePath: false

# The maximum payload size in bytes for incoming server requests.
#server.maxPayloadBytes: 1048576

# The Kibana server's name.  This is used for display purposes.
#server.name: "your-hostname"

# The URLs of the Elasticsearch instances to use for all your queries.
elasticsearch.hosts: ["http://localhost:9200"]

 

双击启动即可

image

 

启动成功页面

image

 

 

启动成功之后可以在Kibana中查看一下当前es中存在的索引

image

 

3、启动logstash

编写一个logstash_test.conf配置文件,体验一下Logstash

input {
  stdin {}
}

output {

  stdout{  }
  
}

启动命令

.\bin\logstash.bat -f .\config\logstash_test.conf

直接在控制台输入test logstash,控制台输出我们输入的内容

image

换一种输出数据的格式,以json | rubydebug

stdout{ codec => rubydebug }
stdout{ codec => json}

大家可以自己测试,看一下输出的效果

Logstash接入FileBeat

配置文件做一下改动,多了inpu插件配置,监听一个5044端口,这个就是FileBeat网络端口

# Sample Logstash configuration for creating a simple
# Beats -> Logstash -> Elasticsearch pipeline.

input {
  beats {
    port => 5044
  }
}

output {

  stdout{ codec => rubydebug }
   
}

 

4、启动FileBeat

 

新建FileBeat配置文件filebeat_test.yml

# ============================== Filebeat inputs ===============================

filebeat.inputs:
- type: log
  #开启日志读取
  enabled: true
  #日志路径
  paths:
    - D:\data\logs\demo\*.log
  #额外的字段
  fields:
   app: demo
   review: 1
  #匹配多行,按照时间正则匹配 yyyy-MM-dd HH:mm:ss.SSS  
  multiline.pattern: ^\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}.\d{3}
  multiline.negate: true
  #日期之后匹配
  multiline.match: after
  #tail_files = true 不收集存量日志
  tail_files: true
  #额外增加的标签字段
  tags: ["demo"] 

# ============================== Filebeat modules ==============================

filebeat.config.modules:
  # Glob pattern for configuration loading
  path: ${path.config}/modules.d/*.yml

  # Set to true to enable config reloading
  reload.enabled: false

  # Period on which files under path should be checked for changes
  #reload.period: 10s

# ======================= Elasticsearch template setting =======================
#es 索引模板
setup.template.settings:
  index.number_of_shards: 1
  #index.codec: best_compression
  #_source.enabled: false

# ------------------------------ Logstash Output -------------------------------
#输出到logstash
output.logstash:
  #The Logstash hosts
  hosts: ["localhost:5044"]

processors:
  - add_host_metadata: ~
  - add_cloud_metadata: ~
  - add_docker_metadata: ~
  - add_kubernetes_metadata: ~

启动FileBeat

 

.\filebeat.exe -e -c .\filebeat_test.yml

 

 

访问demo项目,打印一些日志,让FileBeta读取

image

Logstash控制台,这是json形式打印出来的

image

我们挑一条日志格式化看看FileBeat采集的日志通过Logstash打印出来之后是什么样子。

{
    "@version":"1",
    "message":"2020-08-16 17:29:13.138 6a83f82acbf8000 [http-nio-8080-exec-9] DEBUG com.cd.demo.controllr.DemoController[28] - ======================debug",
    "fields":{
        "app":"demo",
        "review":1
    },
    "tags":[
          "demo",
          "beats_input_codec_plain_applied"
    ],
    "@timestamp":"2020-08-16T09:29:15.075Z",
    "ecs":{
        "version":"1.5.0"
    },
    "input":{
        "type":"log"
    },
    "host":{
        "name":"WIN-IJE5R5BU096",
        "architecture":"x86_64",
        "id":"0ea80d06-30e3-4b1f-9e15-cf0006381169",
        "ip":[
            "fe80::445f:b46c:2007:b14b",
            "192.168.1.83",
            "fe80::3c10:2e3f:fc46:9d28",
            "169.254.157.40",
            "fe80::9842:fa00:1199:8207",
            "169.254.130.7",
            "fe80::ac1b:b018:58f6:f20e",
            "169.254.242.14",
            "172.24.36.1",
            "fe80::2d69:dab9:f82c:33ce",
            "169.254.51.206"
        ],
        "hostname":"WIN-IJE5R5BU096",
        "mac":[
            "f8:b4:6a:20:7f:f4",
            "c0:b5:d7:28:44:85",
            "c2:b5:d7:28:44:85",
            "e2:b5:d7:28:44:85",
            "00:ff:3f:88:6e:59"
        ],
        "os":{
            "name":"Windows 10 Home China",
            "version":"10.0",
            "family":"windows",
            "build":"18363.1016",
            "platform":"windows",
            "kernel":"10.0.18362.1016 (WinBuild.160101.0800)"
        }
    },
    "log":{
        "file":{
            "path":"D:\data\logs\demo\demo-info.log"
        },
        "offset":2020
    },
    "agent":{
        "name":"WIN-IJE5R5BU096",
        "version":"7.8.0",
        "ephemeral_id":"f073c7ec-d88b-4ddb-9870-bd6128d5497a",
        "type":"filebeat",
        "id":"e0b6d369-cc12-4132-bf81-5c2f85ce2b2a",
        "hostname":"WIN-IJE5R5BU096"
    }
}

以上就是FileBeat收集通过Logstash未经过滤打印在控制台的数据,可以看到FileBeat收集的日志还是很全面(软件,硬件,网络),这些日志我们并不全部需要,我们仅把自己需要的字段存储即可,这就需要格式化数据。格式化数据需要借助Logstash的Filter插件,https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

找到grok插件,它的意思是将非结构化事件数据转为字段,转为字段之后我们方便存储统计

image

我们真正要提取的是message字段,这个字段是我们实际的业务日志,使用grok编写正则去提取message字段,可以用Kibana自带的grok工具或者是 http://grokdebug.herokuapp.com/?#(grokdebug并不好用,时常无法访问)

来测试编写正则,匹配提取我们的日志,下图就展示了将message抽取为一个个单独的字段

image

 

完整的Logasth配置

# Sample Logstash configuration for creating a simple
# Beats -> Logstash -> Elasticsearch pipeline.

input {
  beats {
    port => 5044
  }
}

filter {
    #提取message字段,这个字段是业务日志,使用正则匹配的形式将message提取为一个个字段,为什么有两个message呢?假如你的日志格式不统一就需要多个正则去匹配,但是尽量避免这种情况的出现
    #多个正则匹配,如果日志量比较大,会降低Logstash的处理效率,
    grok{
      match => [
            "message" , "(?m)%{TIMESTAMP_ISO8601:logdate}\s+%{BASE16NUM:traceId}+\s\[%{DATA:thread}\]\s+%{LOGLEVEL:level}\s+%{PROG:className}\[%{INT:classLine}\]\s+-+\s+%{GREEDYDATA:msg}",
            "message" , "(?m)%{TIMESTAMP_ISO8601:logdate}\s\s+\[%{DATA:thread}\]\s+%{LOGLEVEL:level}\s\s++%{PROG:className}\[%{INT:classLine}\]\s+-+\s+%{GREEDYDATA:msg}"
       ]       
 
   }
  #使用业务日志时间替换Logstash的@timestamp时间,避免两个时间不同步
  date {
        match => ["logdate", "yyyy-MM-dd HH:mm:ss.SSS"]
        target => "@timestamp"
        remove_field => ["logdate"]
  }
  #去除一些不需要的字段,注意一定要保留@timestamp字段否则无法按照日期维度建立索引,同时也保留message字段方便我们查看
  #同时将额外添加的fields字段当作一个新的字段添加,这样以便我们知道是哪个应用日志,也可以使用tags字段来做定义
    mutate{
      remove_field => ["@version","@metadata","input","agent","ecs","fields"]
      add_field => {
        "appName" => "%{[fields][app]}"
      }
    }
}


#经过filter过滤之后的字段继续输出到控制台
output {

  stdout{ codec => json }
   
}

 

重启Logstash观察控制台日志

{
    "tags":[
        "demo",
        "beats_input_codec_plain_applied"
    ],
    "log":{
        "file":{
            "path":"D:\data\logs\demo\demo-info.log"
        },
        "offset":2020
    },
    "host":{
        "mac":[
            "f8:b4:6a:20:7f:f4",
            "c0:b5:d7:28:44:85",
            "c2:b5:d7:28:44:85",
            "e2:b5:d7:28:44:85",
            "00:ff:3f:88:6e:59"
        ],
        "os":{
            "build":"18363.1016",
            "platform":"windows",
            "name":"Windows 10 Home China",
            "kernel":"10.0.18362.1016 (WinBuild.160101.0800)",
            "family":"windows",
            "version":"10.0"
        },
        "id":"0ea80d06-30e3-4b1f-9e15-cf0006381169",
        "name":"WIN-IJE5R5BU096",
        "ip":[
            "fe80::445f:b46c:2007:b14b",
            "192.168.1.83",
            "fe80::3c10:2e3f:fc46:9d28",
            "169.254.157.40",
            "fe80::9842:fa00:1199:8207",
            "169.254.130.7",
            "fe80::ac1b:b018:58f6:f20e",
            "169.254.242.14",
            "172.24.36.1",
            "fe80::2d69:dab9:f82c:33ce",
            "169.254.51.206"
        ],
        "hostname":"WIN-IJE5R5BU096",
        "architecture":"x86_64"
    },
    "level":"DEBUG",
    "traceId":"6a91634313f7000",
    "className":"com.cd.demo.controllr.DemoController",
    "msg":"======================debug",
    "appName":"demo",
    "classLine":"28",
    "message":"2020-08-17 09:07:13.761 6a91634313f7000 [http-nio-8080-exec-1] DEBUG com.cd.demo.controllr.DemoController[28] - ======================debug",
    "thread":"http-nio-8080-exec-1",
    "@timestamp":"2020-08-17T01:07:13.761Z"
}

 

现在看这个日志基本上已经是我们想要的,包括,日志路径,应用名,业务日志,主机信息等核心日志信息。

接着我们将日志结果输出到ES中去 文档地址:https://www.elastic.co/guide/en/logstash/current/plugins-outputs-elasticsearch.html#plugins-outputs-elasticsearch-index

高版本的Logstash日志索引默认建立方式是{now/d}-000001  格式,例如:logstash-2020.02.10-000001,如果想自己定义指定 ilm_enabled => false即可

Logstash配置输出到ES完整配置,加了详细配置说明

 

# Sample Logstash configuration for creating a simple
# Beats -> Logstash -> Elasticsearch pipeline.

input {
  beats {
    port => 5044
  }
}

filter {
    #提取message字段,这个字段是业务日志,使用正则匹配的形式将message提取为一个个字段,为什么有两个message呢?假如你的日志格式不统一就需要多个正则去匹配,但是尽量避免这种情况的出现
    #多个正则匹配,如果日志量比较大,会降低Logstash的处理效率,
    grok{
      match => [
            "message" , "(?m)%{TIMESTAMP_ISO8601:logdate}\s+%{BASE16NUM:traceId}+\s\[%{DATA:thread}\]\s+%{LOGLEVEL:level}\s+%{PROG:className}\[%{INT:classLine}\]\s+-+\s+%{GREEDYDATA:msg}",
            "message" , "(?m)%{TIMESTAMP_ISO8601:logdate}\s\s+\[%{DATA:thread}\]\s+%{LOGLEVEL:level}\s\s++%{PROG:className}\[%{INT:classLine}\]\s+-+\s+%{GREEDYDATA:msg}"
       ]       
 
   }
  #使用业务日志时间替换Logstash的@timestamp时间,避免两个时间不同步
  date {
        match => ["logdate", "yyyy-MM-dd HH:mm:ss.SSS"]
        target => "@timestamp"
        remove_field => ["logdate"]
  }
  #去除一些不需要的字段,注意一定要保留@timestamp字段否则无法按照日期维度建立索引,同时也保留message字段方便我们查看
  #同时将额外添加的fields字段当作一个新的字段添加,这样以便我们知道是哪个应用日志,也可以使用tags字段来做定义
    mutate{
      remove_field => ["@version","@metadata","input","agent","ecs","fields"]
      add_field => {
        "appName" => "%{[fields][app]}"
      }
    }
}


#经过filter过滤之后的字段继续输出到控制台 和  ES 
output {
  stdout{ codec => rubydebug }
    elasticsearch {
      hosts => ["127.0.0.1:9200"]
      #按照每天一个日志索引建立
      index => "logstash-demo-%{+yyyy.MM.dd}"
      #关闭Logstash的ilm_enabled,否则会按照{now/d}-000001   方式创建索引文件
      #ilm_enabled => false
    }

}

 

 

image

Kibana展示日志数据,Kibane读取ES的数据索引

image

 

Kibana->Discover展示数据

全量message

image

message字段解析之后的字段展示

image

 

建立日志分析图

饼图,按照应用维度创建

image

 

柱形图,按照日志级别维度创建

image

 

时间维度,最近30次日志分布

image

 

创建仪表盘

image

 

image

 

image

 

注意,如果你想改图示名字,点击save重新保存即可,图示改名也是如此。

image

 

以上就是ELK+FileBeat全量配置,如果日志量太大可以优化Logsasth,比如加Logstash集群,不使用正则匹配日志等,本文ELK虽然是基于windows搭建,但配置信息在Linux是可以使用。

 

linux环境下后台启动

nohup filebeat -e -c filebeat_pre.yml &

nohup ./bin/logstash -f config/logstash_pre.conf  &

nohup ./bin/kibana --allow-root  &

 

 

 

参考材料:

官方文档:

https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

https://www.elastic.co/guide/en/kibana/current/index.html

https://www.elastic.co/guide/en/logstash/current/index.html

https://www.elastic.co/guide/en/beats/libbeat/current/index.html

Kibana中文文档:

https://www.elastic.co/guide/cn/kibana/current/index.html

 

posted on 2020-08-16 15:38  古越剑箫  阅读(2030)  评论(0编辑  收藏  举报