g
y
7
7
7
7

xml转voc,voc转coco,coco转yolo,coco划分,coco检查,yolo检查,coco可视化

平常用coco格式的数据集比较多,所有这里整合一下数据集相关的常用的脚本。

pycocotools安装

这个非常重要,因为处理coco数据集时,用pycocotools包非常方便。

自行搜索一下怎么安装吧,windows安装比较麻烦。网上有很多方法,但是都有时效性,不定时就失效了。如果有好的安装pycocotools的文章,可以把链接评论在评论区。

xml转voc

xml2voc.py

# 命令行执行:  python xml2voc2007.py --input_dir data --output_dir VOCdevkit
# 输出文件夹必须为空文件夹

import argparse
import glob
import os
import random
import sys
import shutil


# 主程序执行
def xml2voc():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument("--input_dir", default="data", help="input annotated directory")
    parser.add_argument("--output_dir", default="VOCdevkit", help="output dataset directory")
    args = parser.parse_args()

    if os.path.exists(args.output_dir):
        print("Output directory already exists:", args.output_dir)
        sys.exit(1)
    os.makedirs(args.output_dir)
    print("| Creating dataset dir:", os.path.join(args.output_dir, "VOC2007"))

    # 创建保存的文件夹
    if not os.path.exists(os.path.join(args.output_dir, "VOC2007", "Annotations")):
        os.makedirs(os.path.join(args.output_dir, "VOC2007", "Annotations"))
    if not os.path.exists(os.path.join(args.output_dir, "VOC2007", "ImageSets")):
        os.makedirs(os.path.join(args.output_dir, "VOC2007", "ImageSets"))

    if not os.path.exists(os.path.join(args.output_dir, "VOC2007", "ImageSets", "Main")):
        os.makedirs(os.path.join(args.output_dir, "VOC2007", "ImageSets", "Main"))
    if not os.path.exists(os.path.join(args.output_dir, "VOC2007", "JPEGImages")):
        os.makedirs(os.path.join(args.output_dir, "VOC2007", "JPEGImages"))

    # 获取目录下所有的.jpg文件列表
    total_img = glob.glob(os.path.join(args.input_dir, "*.jpg"))
    print('| Image number: ', len(total_img))

    # 获取目录下所有的joson文件列表
    total_xml = glob.glob(os.path.join(args.input_dir, "*.xml"))
    print('| Xml number: ', len(total_xml))

    percent_trainval = 0.8
    percent_train = 0.75
    num_total = len(total_xml)
    data_list = range(num_total)

    num_tv = int(num_total * percent_trainval)
    num_tr = int(num_tv * percent_train)
    num_trainval = random.sample(data_list, num_tv)
    num_train = random.sample(num_trainval, num_tr)

    print('| Train number: ', num_tr)
    print('| Val number: ', num_tv - num_tr)
    print('| Test number: ', num_total - num_tv)

    file_trainval = open(
        os.path.join(args.output_dir, "VOC2007", "ImageSets", "Main", "trainval.txt"), 'w')
    file_test = open(
        os.path.join(args.output_dir, "VOC2007", "ImageSets", "Main", "test.txt"), 'w')
    file_train = open(
        os.path.join(args.output_dir, "VOC2007", "ImageSets", "Main", "train.txt"), 'w')
    file_val = open(
        os.path.join(args.output_dir, "VOC2007", "ImageSets", "Main", "val.txt"), 'w')

    for i in data_list:
        name = os.path.basename(total_xml[i])[:-4] + '\n'  # 去掉.xml后缀以及父级目录,只保留文件名
        if i in num_trainval:
            file_trainval.write(name)
            if i in num_train:
                file_train.write(name)
            else:
                file_val.write(name)
        else:
            file_test.write(name)

    file_trainval.close()
    file_train.close()
    file_val.close()
    file_test.close()

    if os.path.exists(args.input_dir):
        # root 所指的是当前正在遍历的这个文件夹的本身的地址  
        # dirs 是一个 list,内容是该文件夹中所有的目录的名字(不包括子目录)  
        # files 同样是 list, 内容是该文件夹中所有的文件(不包括子目录)  
        for root, dirs, files in os.walk(args.input_dir):
            for file in files:
                src_file = os.path.join(root, file)
                if src_file.endswith(".jpg"):
                    shutil.copy(src_file, os.path.join(args.output_dir, "VOC2007", "JPEGImages"))
                else:
                    shutil.copy(src_file, os.path.join(args.output_dir, "VOC2007", "Annotations"))

    print('| Done!')


if __name__ == "__main__":
    print("—" * 50)
    xml2voc()
    print("—" * 50)

voc转coco

voc2coco.py

import json
import os
import shutil
import datetime
from PIL import Image
from tqdm import trange

root_dir = os.getcwd()


def voc2coco():
    # 处理coco数据集中category字段。
    # 创建一个 {类名 : id} 的字典,并保存到 总标签data 字典中。
    class_name_to_id = {'class1': 1, 'class2': 2, 'class3': 3, 'class4': 4, 'class5': 5, 'class6': 6, 'class7': 7, 'class8': 8}        # 改为自己的类别名称,以及对应的类别id

    # 创建coco的文件夹
    if not os.path.exists(os.path.join(root_dir, "coco")):
        os.makedirs(os.path.join(root_dir, "coco"))
        os.makedirs(os.path.join(root_dir, "coco", "annotations"))
        os.makedirs(os.path.join(root_dir, "coco", "train"))
        os.makedirs(os.path.join(root_dir, "coco", "val"))

    # 创建 总标签data
    now = datetime.datetime.now()
    data = dict(
        info=dict(
            description=None,
            url=None,
            version=None,
            year=now.year,
            contributor=None,
            date_created=now.strftime("%Y-%m-%d %H:%M:%S.%f"),
        ),
        licenses=[dict(url=None, id=0, name=None, )],
        images=[
            # license, file_name,url, height, width, date_captured, id
        ],
        type="instances",
        annotations=[
            # segmentation, area, iscrowd, image_id, bbox, category_id, id
        ],
        categories=[
            # supercategory, id, name
        ],
    )

    for name, id in class_name_to_id.items():
        data["categories"].append(
            dict(supercategory=None, id=id, name=name, )
        )

    # 处理coco数据集train中images字段。
    images_dir = os.path.join(root_dir, 'VOCdevkit', 'VOC2012', 'JPEGImages')
    images = os.listdir(images_dir)

    # 生成每个图片对应的image_id
    images_id = {}
    for idx, image_name in enumerate(images):
        images_id.update({image_name[:-4]: idx})

    # 获取训练图片
    train_img = []
    fp = open(os.path.join(root_dir, 'VOCdevkit', 'VOC2012', 'ImageSets', 'Main', 'train.txt'))
    for i in fp.readlines():
        train_img.append(i[:-1] + ".jpg")

    # 获取训练图片的数据
    for image in train_img:
        img = Image.open(os.path.join(images_dir, image))
        data["images"].append(
            dict(
                license=0,
                url=None,
                file_name=image,  # 图片的文件名带后缀
                height=img.height,
                width=img.width,
                date_captured=None,
                # id=image[:-4],
                id=images_id[image[:-4]],
            )
        )

    # 获取coco数据集train中annotations字段。
    train_xml = [i[:-4] + '.xml' for i in train_img]

    bbox_id = 0
    for xml in train_xml:
        category = []
        xmin = []
        ymin = []
        xmax = []
        ymax = []
        import xml.etree.ElementTree as ET
        tree = ET.parse(os.path.join(root_dir, 'VOCdevkit', 'VOC2012', 'Annotations', xml))
        root = tree.getroot()
        object = root.findall('object')
        for i in object:
            category.append(class_name_to_id[i.findall('name')[0].text])
            bndbox = i.findall('bndbox')
            for j in bndbox:
                xmin.append(float(j.findall('xmin')[0].text))
                ymin.append(float(j.findall('ymin')[0].text))
                xmax.append(float(j.findall('xmax')[0].text))
                ymax.append(float(j.findall('ymax')[0].text))
        for i in range(len(category)):
            data["annotations"].append(
                dict(
                    id=bbox_id,
                    image_id=images_id[xml[:-4]],
                    category_id=category[i],
                    area=(xmax[i] - xmin[i]) * (ymax[i] - ymin[i]),
                    bbox=[xmin[i], ymin[i], xmax[i] - xmin[i], ymax[i] - ymin[i]],
                    iscrowd=0,
                )
            )
            bbox_id += 1
    # 生成训练集的json
    json.dump(data, open(os.path.join(root_dir, 'coco', 'annotations', 'train.json'), 'w'))

    # 获取验证图片
    val_img = []
    fp = open(os.path.join(root_dir, 'VOCdevkit', 'VOC2012', 'ImageSets', 'Main', 'val.txt'))
    for i in fp.readlines():
        val_img.append(i[:-1] + ".jpg")

    # 将训练的images和annotations清空,
    del data['images']
    data['images'] = []
    del data['annotations']
    data['annotations'] = []

    # 获取验证集图片的数据
    for image in val_img:
        img = Image.open(os.path.join(images_dir, image))
        data["images"].append(
            dict(
                license=0,
                url=None,
                file_name=image,  # 图片的文件名带后缀
                height=img.height,
                width=img.width,
                date_captured=None,
                id=images_id[image[:-4]],   # 图片名作为id
            )
        )

    # 处理coco数据集验证集中annotations字段。
    val_xml = [i[:-4] + '.xml' for i in val_img]

    for xml in val_xml:
        category = []
        xmin = []
        ymin = []
        xmax = []
        ymax = []
        import xml.etree.ElementTree as ET
        tree = ET.parse(os.path.join(root_dir, 'VOCdevkit', 'VOC2012', 'Annotations', xml))
        root = tree.getroot()
        object = root.findall('object')
        for i in object:
            category.append(class_name_to_id[i.findall('name')[0].text])
            bndbox = i.findall('bndbox')
            for j in bndbox:
                xmin.append(float(j.findall('xmin')[0].text))
                ymin.append(float(j.findall('ymin')[0].text))
                xmax.append(float(j.findall('xmax')[0].text))
                ymax.append(float(j.findall('ymax')[0].text))
        for i in range(len(category)):
            data["annotations"].append(
                dict(
                    id=bbox_id,
                    image_id=images_id[xml[:-4]],
                    category_id=category[i],
                    area=(xmax[i] - xmin[i]) * (ymax[i] - ymin[i]),
                    bbox=[xmin[i], ymin[i], xmax[i] - xmin[i], ymax[i] - ymin[i]],
                    iscrowd=0,
                )
            )
            bbox_id += 1
    # 生成验证集的json
    json.dump(data, open(os.path.join(root_dir, 'coco', 'annotations', 'val.json'), 'w'))
    print('| VOC -> COCO annotations transform finish.')
    print('Start copy images...')

    # 复制图片
    m = len(train_img)
    for i in trange(m):
        shutil.copy(os.path.join(images_dir, train_img[i]), os.path.join(root_dir, 'coco', 'train', train_img[i]))
    print('| Train images copy finish.')

    m = len(val_img)
    for i in trange(m):
        shutil.copy(os.path.join(images_dir, val_img[i]), os.path.join(root_dir, 'coco', 'val', val_img[i]))
    print('| Val images copy finish.')


if __name__ == '__main__':
    voc2coco()

coco转yolo

coco数据集目录结构:

coco_small
├── train
│   ├── 001.jpg
│   ├── 002.jpg
│   ├── 003.jpg
│   └── ...
│
├── val
│   ├── 004.jpg
│   ├── 005.jpg
│   ├── 006.jpg
│   └── ...
├── test
│   ├── 007.jpg
│   ├── 008.jpg
│   ├── 009.jpg
│   └── ...
│
└── annotatoins
    ├── train.json
    ├── val.json
    └── test.json

生成的yolo数据集目录:

yolo_dataset
├── images
│   ├── 001.jpg
│   ├── 002.jpg
│   ├── 003.jpg
│   └── ...
│
├── labels
│   ├── 001.txt
│   ├── 002.txt
│   ├── 003.txt
│   └── ...
│
└── ImageSets
    ├── train.txt
    ├── val.txt
    └── test.txt

将coco的train,val,test分别转换为yolo的train,val,test
coco2yolo.py

# coco是x1,y1,w,h,yolo是x,y,w,h。 x1,y1是左上角坐标,x,y是中心坐标
import os
import shutil

from pycocotools.coco import COCO
from tqdm import trange

root_dir = os.getcwd()


# 将coco的bbox转换为yolo的bbox
def cocobbox2yolobbox(coco_box):
    x1, y1, w, h = coco_box
    x = x1 + w / 2
    y = y1 + h / 2
    return [x, y, w, h]


def coco2yolo(dataset_type, json_fp, origin_imgs_dir, save_dir):
    imgs_dir = os.path.join(save_dir, 'images')
    labels_dir = os.path.join(save_dir, 'labels')
    ImageSets_dir = os.path.join(save_dir, 'ImageSets')
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
        os.mkdir(imgs_dir)
        os.mkdir(labels_dir)
        os.mkdir(ImageSets_dir)

    text_data_fp = os.path.join(ImageSets_dir, dataset_type + '.txt')
    text_data = []

    coco = COCO(json_fp)
    imgs = coco.imgs
    img_ids = coco.getImgIds()

    m = len(img_ids)
    for i in trange(m):
        img_id = img_ids[i]
        filename = imgs[img_id]['file_name']
        text_data.append(os.path.join(imgs_dir, filename))
        txt_name = filename.split('.')[0] + ".txt"  # 对应的txt名字,与jpg一致
        f_txt = open(os.path.join(labels_dir, txt_name), 'w')

        ann_ids = coco.getAnnIds(imgIds=img_id)
        anns = coco.loadAnns(ann_ids)
        for ann in anns:
            bbox = cocobbox2yolobbox(ann["bbox"])
            f_txt.write("%s %s %s %s %s\n" % (ann['category_id'], bbox[0], bbox[1], bbox[2], bbox[3]))
        f_txt.close()

    # 将数据集写入文件
    with open(text_data_fp, 'w') as f:
        for line in text_data:
            f.write(line + '\n')
    print('labels create done.')

    for i in trange(m):
        img_id = img_ids[i]
        filename = imgs[img_id]['file_name']
        shutil.copy(os.path.join(origin_imgs_dir, filename), os.path.join(imgs_dir, filename))
    print('images copy done.')


def coco2yolo_type(dataset_type):
    save_dir = os.path.join(root_dir, 'yolo_dataset')
    if dataset_type == 'train':
        json_fp = os.path.join(root_dir, 'coco_small', 'annotations', 'train.json')
        imgs_dir = os.path.join(root_dir, 'coco_small', 'train')
        coco2yolo(dataset_type, json_fp, imgs_dir, save_dir)
    elif dataset_type == 'val':
        json_fp = os.path.join(root_dir, 'coco_small', 'annotations', 'val.json')
        imgs_dir = os.path.join(root_dir, 'coco_small', 'val')
        coco2yolo(dataset_type, json_fp, imgs_dir, save_dir)
    elif dataset_type == 'test':
        json_fp = os.path.join(root_dir, 'coco_small', 'annotations', 'test.json')
        imgs_dir = os.path.join(root_dir, 'coco_small', 'test')
        coco2yolo(dataset_type, json_fp, imgs_dir, save_dir)


if __name__ == '__main__':
    coco2yolo_type('train')
    coco2yolo_type('val')
    coco2yolo_type('test')

coco数据集划分为train,val,test

划分前目录结构:

coco
   +annotations
   +val2017
   +split_coco.py

划分后目录结构:

coco_small
   +annotations
      +train.json
      +val.json
      +test.json
   +train
   +val
   +test

split_coco.py

# 划分coco数据集
# 将coco数据集分为train和val两个子集
import json
import os
import random
import shutil

from pycocotools.coco import COCO
from tqdm import trange

train_percentage = 0.7
val_percentage = 0.2
root_dir = os.getcwd()
json_fp = os.path.join(root_dir, 'coco', 'annotations', 'instances_val2017.json')
img_dir = os.path.join(root_dir, 'coco', 'val2017')
save_dir = os.path.join(root_dir, 'coco_small')


def split_coco(json_fp, img_dir, save_dir):
    json_data = json.load(open(json_fp, 'r'))
    coco = COCO(json_fp)

    train_dir = os.path.join(save_dir, 'train')
    val_dir = os.path.join(save_dir, 'val')
    test_dir = os.path.join(save_dir, 'test')
    train_json = {'info': json_data['info'], 'licenses': json_data['licenses'], 'images': [], 'annotations': [],
                  'categories': json_data['categories']}
    val_json = {'info': json_data['info'], 'licenses': json_data['licenses'], 'images': [], 'annotations': [],
                'categories': json_data['categories']}
    test_json = {'info': json_data['info'], 'licenses': json_data['licenses'], 'images': [], 'annotations': [],
                 'categories': json_data['categories']}
    # 创建coco目录结构
    if os.path.exists(save_dir):
        shutil.rmtree(save_dir)
    os.makedirs(save_dir)
    os.mkdir(train_dir)
    os.mkdir(val_dir)
    os.mkdir(test_dir)
    os.mkdir(os.path.join(save_dir, 'annotations'))

    imgs = coco.imgs
    img_ids = coco.getImgIds()
    train_ids = random.sample(img_ids, int(len(img_ids) * train_percentage))
    val_ids = random.sample(list(set(img_ids) - set(train_ids)), int(len(img_ids) * val_percentage))

    m = len(img_ids)
    for i in trange(m):
        ann_ids = coco.getAnnIds(imgIds=img_ids[i])
        if img_ids[i] in train_ids:
            train_json['images'].append(imgs[img_ids[i]])
            shutil.copy(os.path.join(img_dir, imgs[img_ids[i]]['file_name']),
                        os.path.join(train_dir, imgs[img_ids[i]]['file_name']))
            for ann_id in ann_ids:
                train_json['annotations'].append(coco.anns[ann_id])
        elif img_ids[i] in val_ids:
            val_json['images'].append(imgs[img_ids[i]])
            shutil.copy(os.path.join(img_dir, imgs[img_ids[i]]['file_name']),
                        os.path.join(val_dir, imgs[img_ids[i]]['file_name']))
            for ann_id in ann_ids:
                val_json['annotations'].append(coco.anns[ann_id])
        else:
            test_json['images'].append(imgs[img_ids[i]])
            shutil.copy(os.path.join(img_dir, imgs[img_ids[i]]['file_name']),
                        os.path.join(test_dir, imgs[img_ids[i]]['file_name']))
            for ann_id in ann_ids:
                test_json['annotations'].append(coco.anns[ann_id])

    with open(os.path.join(save_dir, 'annotations', 'train.json'), 'x') as f:
        json.dump(train_json, f)
    with open(os.path.join(save_dir, 'annotations', 'val.json'), 'x') as f:
        json.dump(val_json, f)
    with open(os.path.join(save_dir, 'annotations', 'test.json'), 'x') as f:
        json.dump(test_json, f)


if __name__ == '__main__':

    split_coco(json_fp, img_dir, save_dir)
    print('done')

coco数据集图片检查

check_coco.py

# 检查coco数据集每张图片能否打开
import os
import cv2
from pycocotools.coco import COCO
from tqdm import trange
root_dir = os.getcwd()


def check_coco(json_fp, img_dir):
    coco = COCO(json_fp)
    imgs = coco.imgs
    img_ids = coco.getImgIds()

    for i in trange(len(img_ids)):
        img_fp = os.path.join(img_dir, imgs[img_ids[i]]['file_name'])
        img = cv2.imread(img_fp)
        try:
            img.shape
        except:
            print(img_fp)


if __name__ == '__main__':
    json_fp = os.path.join(root_dir, 'coco', 'annotations', 'instances_val2017.json')
    img_dir = os.path.join(root_dir, 'coco', 'val2017')
    check_coco(json_fp, img_dir)
    print('done')

yolo数据集图片检查

check_yolo.py

# 检查yolo数据集每张图片能否打开
import os
import cv2
from tqdm import trange

root_dir = os.getcwd()


def check_coco(txt_fp):
    imgs = []
    with open(txt_fp, 'r') as f:
        for line in f:
            imgs.append(line.strip())

    for i in trange(len(imgs)):
        img = cv2.imread(imgs[i])
        try:
            s = img.shape
        except:
            print(imgs[i])


if __name__ == '__main__':
    txt_fp = os.path.join(root_dir, 'yolo_dataset', 'annotations', 'train.txt')
    check_coco(txt_fp)
    print('done')

coco数据集bbox可视化

visiual_coco.py

import os
import random
import cv2
from pycocotools.coco import COCO
from tqdm import trange
root_dir = os.getcwd()


# 检查转变后coco的json文件,坐标是否正确。
def visiual_coco(json_fp, images_dir):
    coco = COCO(json_fp)
    imgs = coco.imgs
    img_ids = coco.getImgIds()
    cats = coco.cats

    random.shuffle(img_ids)
    for i in trange(len(img_ids)):
        img_fp = os.path.join(images_dir, imgs[img_ids[i]]['file_name'])
        img = cv2.imread(img_fp)
        ann_ids = coco.getAnnIds(imgIds=img_ids[i])
        anns_ = coco.loadAnns(ann_ids)
        for ann in anns_:
            bbox = ann['bbox']
            left_top = (int(bbox[0]), int(bbox[1]))  # coco数据集中bbox的含义是x1,y1,w,h
            right_bottom = (int(bbox[0]) + int(bbox[2]), int(bbox[1]) + int(bbox[3]))
            cv2.rectangle(img, left_top, right_bottom, (0, 255, 0), 2)  # 图像,左上角,右下坐标,颜色,粗细
            cv2.putText(img, cats[ann['category_id']]['name'], left_top, cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)

        cv2.imshow('image', img)
        cv2.waitKey(0)
    cv2.destroyAllWindows()


if __name__ == '__main__':
    json_fp = os.path.join(root_dir, 'coco', 'annotations', 'instances_val2017.json')
    images_dir = os.path.join(root_dir, 'coco', 'val2017')
    visiual_coco(json_fp, images_dir)

posted @ 2022-07-13 12:22  gy77  阅读(432)  评论(0编辑  收藏  举报