Reinforcement Learning (DQN) 中经验池详细解释
一般DQN中的经验池类,都类似于下面这段代码。
import random
from collections import namedtuple, deque
Transition = namedtuple('Transition', ('state', 'next_state', 'action', 'reward'))
# 经验池类
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity # 容量
self.memory = []
self.position = 0
# 将四元组压入经验池
def push(self, *args):
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
# 从经验池中随机压出一个四元组
def sample(self, batch_size):
transitions = random.sample(self.memory, batch_size)
batch = Transition(*zip(*transitions))
return batch
def __len__(self):
return len(self.memory)
对Python不太熟悉的我里边就有两点比较迷惑,一个是namedtuple()方法,一个是sample方法的倒数第二行,为什么要这样处理。
第一点,namedtuple()是继承自tuple的子类,namedtuple()方法能够创建一个和tuple类似的对象,而且对象拥有可访问的属性。
第二点,也就是sample方法中的倒数第二行,这里进行了一个转换, 将batch_size个四元组,转换成,四个元祖,每个元祖一共有batch_size项,这里放个程序解释一下。
import random
from collections import namedtuple
if __name__ == '__main__':
batch_size = 3
Transition = namedtuple('Transition', ('state', 'next_state', 'action', 'reward'))
a=Transition(state=1,next_state=2,action=3,reward=4)
b=Transition(state=11,next_state=12,action=13,reward=14)
c=Transition(state=21,next_state=22,action=23,reward=24)
d=Transition(state=31,next_state=32,action=33,reward=34)
e=Transition(state=41,next_state=42,action=43,reward=44)
f=[a,b,c,d,e]
# 从f中随机抽取batch_size个数据
t=random.sample(f,batch_size)
print("随机抽取的batch_size个四元祖是:")
for i in range(batch_size):
print(t[i])
print()
# 将t进行解压操作
print("将四元组进行解压后是:")
print(*zip(*t))
print()
# 将t进行解压操作,再进行Transition转换
# 将batch_size个四元组,转换成,四个元组,每个元组一共有batch_size项
print("将四元组进行解压后再进行Transition转换后是:")
batch=Transition(*zip(*t))
print(batch)
输出结果:
随机抽取的batch_size个四元祖是:
Transition(state=21, next_state=22, action=23, reward=24)
Transition(state=11, next_state=12, action=13, reward=14)
Transition(state=41, next_state=42, action=43, reward=44)
将四元组进行解压后是:
(21, 11, 41) (22, 12, 42) (23, 13, 43) (24, 14, 44)
将四元组进行解压后再进行Transition转换后是:
Transition(state=(21, 11, 41), next_state=(22, 12, 42), action=(23, 13, 43), reward=(24, 14, 44))