g
y
7
7
7
7

【模板】费马小定理

C~K的难题:费马小定理+快速幂

Problem Description

众所周知 C~K 喜欢数学,但是他最近被一个题给难住了,题目是这样的。
要求 (A/B)%10007,但由于 A 很大,我们只给出 n (n = A%10007)(我们给定的A必能被B整除,且 gcd(B,10007) = 1)。
你能帮助他解答吗?他会很感谢你的。

Input

数据的第一行是一个 T,表示有 T 组数据。
每组数据有两个数 n (0 <= n < 10007) 和 B (1 <= B <= 10^9)。

Output

对应每组数据输出 (A/B)%10007。

Sample Input

2
1000 53
87 123456789

Sample Output

8893
7424

费马小定理: 假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p) 两边都mod p;
即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

取余操作的加减乘除:

\[(a+b)\%p=(a\%p+b\%p)\%p \]

\[(a-b)\%p=(a\%p-b\%p)\%p \]

\[(a*b)\%p=((a\%p)*(b\%p))\%p \]

\[(a/b)\%p=(a*b^{-1}\%p)\%p \]

\[(a^b)\%p=((a\%p)^b)\%p \]

延伸公式1:

\[(n*a^{p-1})\%p=n\%p \]

延伸公式2:

\[(a^{p-2})\%p=a^{-1}\%p \]

延伸公式3:

\[a^b\%p=a^{b\%(p-1)}\%p \]

题目解法:k=A/B

\[(A/B)\%p=k\%p \]

\[=k*B^{p-1})\%p \]

\[=(A*B^{p-2})\%p \]

\[=[(A\%p)*(B^{p-2})\%p]\%p \]

\[=[n*(B^{p-2})]\%p \]

第二行:延伸公式1的逆用,只要公式里的a与p互质即可,因为题目中的B与p互质,所以可以用题目中的B来代替公式中的a。

第三行:把k化简开,化成A/B

第四行:取余乘法的分配律

代码:

#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long

int qmi(ll a, ll b, ll mod) {   //快速幂
	ll flag = 1;
	while (b) {
		if (b & 1)flag = (flag*a) % mod;
		a = (a*a) % mod;
		b = b >> 1;
	}
	return flag%mod;
}

int main() {
	int t, n, b,mod=10007;
	cin >> t;
	while (t--) {
		cin >> n >> b;
		cout << n*qmi(b, mod-2, mod) % mod << "\n";
	}
	return 0;
}

  

posted @ 2020-10-15 20:43  gy77  阅读(125)  评论(0编辑  收藏  举报