Pytorch-tensor的转置,运算
1.矩阵的转置
方法:
t()
a=torch.randint(1,10,[2,3])
print(a,'\n')
print(a.t())
输出结果
tensor([[2, 8, 2],
[9, 2, 4]])
tensor([[2, 9],
[8, 2],
[2, 4]])
transpose(维度下标1,维度下标2)
:任意两个维度之间的转换
a=torch.randint(1,10,[2,3,4,5])
print(a.shape)
a1=a.transpose(1,3)
print(a1.shape)
输出结果
torch.Size([2, 3, 4, 5])
torch.Size([2, 5, 4, 3])
permute(维度的下标)
:所有维度之间的任意转换
a=torch.randint(1,10,[2,3,4,5])
print(a.shape)
a1=a.permute(2,3,1,0)
print(a1.shape)
输出结果
torch.Size([2, 3, 4, 5])
torch.Size([4, 5, 3, 2])
2.矩阵的四则运算
矩阵的加法:2行3列矩阵+2行3列矩阵:
a=torch.randint(1,10,[2,3])
b=torch.randint(1,10,[2,3])
print(a,'\n')
print(b,'\n')
print(a+b,'\n')
输出结果
tensor([[4, 1, 8],
[6, 7, 4]])
tensor([[9, 7, 1],
[5, 1, 6]])
tensor([[13, 8, 9],
[11, 8, 10]])
2行3列矩阵+1行3列矩阵:会先将第二个矩阵复制一行,然后再相加
a=torch.randint(1,10,[2,3])
b=torch.randint(1,10,[1,3])
print(a,'\n')
print(b,'\n')
print(a+b,'\n')
输出结果
tensor([[9, 2, 3],
[2, 7, 9]])
tensor([[7, 8, 2]])
tensor([[16, 10, 5],
[ 9, 15, 11]])
2行1列矩阵+1行3列矩阵:会先将第一个矩阵复制成三列,然后将第二个矩阵复制成两行,再进行相加
a=torch.randint(1,10,[2,1])
b=torch.randint(1,10,[1,3])
print(a,'\n')
print(b,'\n')
print(a+b,'\n')
输出结果
tensor([[3],
[2]])
tensor([[4, 2, 5]])
tensor([[7, 5, 8],
[6, 4, 7]])
cat(所要相加的矩阵,维度)
:两个矩阵的某个维度相加
除了相加的维度之外,其余的维度的值必须相同
a=torch.randint(1,10,[2,3])
b=torch.randint(1,10,[1,3])
print(a.shape)
print(b.shape)
print(torch.cat([a,b],dim=0).shape,'\n')
输出结果
torch.Size([2, 3])
torch.Size([1, 3])
torch.Size([3, 3])
stack()
:会在所相加维度之前加一个2维的维度,用于两个tensor相加,但不想合并。
a=torch.randint(1,10,[1,3])
b=torch.randint(1,10,[1,3])
print(a.shape)
print(b.shape)
print(torch.stack([a,b],dim=0).shape)
print(torch.stack([a,b],dim=1).shape)
输出结果
torch.Size([1, 3])
torch.Size([1, 3])
torch.Size([2, 1, 3])
torch.Size([1, 2, 3])
矩阵的外积
a=torch.tensor([[1,2],[3,4]])
b=torch.tensor([[1,2],[3,4]])
print(a)
print(b)
print(a*b)
输出结果
tensor([[1, 2],
[3, 4]])
tensor([[1, 2],
[3, 4]])
tensor([[ 1, 4],
[ 9, 16]])
matmul(矩阵a,矩阵b)
: 计算矩阵的内积(推荐)
@
:计算矩阵的内积
a=torch.tensor([[1,2],[3,4]])
b=torch.tensor([[1,2],[3,4]])
print(a)
print(b)
print(torch.matmul(a,b)) #推荐使用此方法
print(a@b) # 不推荐
输出结果
tensor([[1, 2],
[3, 4]])
tensor([[1, 2],
[3, 4]])
tensor([[ 7, 10],
[15, 22]])
tensor([[ 7, 10],
[15, 22]])