g
y
7
7
7
7

Pytorch-tensor维度的扩展,挤压,扩张

数据本身不发生改变,数据的访问方式发生了改变

1.维度的扩展

函数:unsqueeze()

# a是一个4维的
    a = torch.randn(4, 3, 28, 28)
    print('a.shape\n', a.shape)

    print('\n维度扩展(变成5维的):')
    print('第0维前加1维')
    print(a.unsqueeze(0).shape)
    print('第4维前加1维')
    print(a.unsqueeze(4).shape)
    print('在-1维前加1维')
    print(a.unsqueeze(-1).shape)
    print('在-4维前加1维')
    print(a.unsqueeze(-4).shape)
    print('在-5维前加1维')
    print(a.unsqueeze(-5).shape)

输出结果

a.shape
 torch.Size([4, 3, 28, 28])

维度扩展(变成5维的):
第0维前加1维
torch.Size([1, 4, 3, 28, 28])
第4维前加1维
torch.Size([4, 3, 28, 28, 1])
在-1维前加1维
torch.Size([4, 3, 28, 28, 1])
在-4维前加1维
torch.Size([4, 1, 3, 28, 28])
在-5维前加1维
torch.Size([1, 4, 3, 28, 28])

注意,第5维前加1维,就会出错

    # print(a.unsqueeze(5).shape)
    # Errot:Dimension out of range (expected to be in range of -5, 4], but got 5)

连续扩维:unsqueeze()

    # b是一个1维的
    b = torch.tensor([1.2, 2.3])
    print('b.shape\n', b.shape)
    print()
    # 0维之前插入1维,变成1,2]
    print(b.unsqueeze(0))
    print()
    # 1维之前插入1维,变成2,1]
    print(b.unsqueeze(1))

    # 连续扩维,然后再对某个维度进行扩张
    print(b.unsqueeze(1).unsqueeze(2).unsqueeze(0).shape)

输出结果

b.shape
 torch.Size([2])

tensor([[1.2000, 2.3000]])

tensor([[1.2000],
        [2.3000]])
torch.Size([1, 2, 1, 1])

2.挤压维度

函数:squeeze()

    # 挤压维度,只会挤压shape为1的维度,如果shape不是1的话,当前值就不会变
    c = torch.randn(1, 32, 1, 2)
    print(c.shape)
    print(c.squeeze(0).shape)
    print(c.squeeze(1).shape)  # shape不是1,不会变
    print(c.squeeze(2).shape)
    print(c.squeeze(3).shape)  # shape不是1,不会变

输出结果

torch.Size([1, 32, 1, 2])
torch.Size([32, 1, 2])
torch.Size([1, 32, 1, 2])
torch.Size([1, 32, 2])
torch.Size([1, 32, 1, 2])

3.维度扩张

函数1:expand():扩张到多少,

    # shape的扩张
    # expand():对shape为1的进行扩展,对shape不为1的只能保持不变,因为不知道如何变换,会报错

    d = torch.randn(1, 32, 1, 1)
    print(d.shape)
    print(d.expand(4, 32, 14, 14).shape)

输出结果

torch.Size([1, 32, 1, 1])
torch.Size([4, 32, 14, 14])

函数2:repeat()方法,扩张多少倍

    d=torch.randn([1,32,4,5])
    print(d.shape)
    print(d.repeat(4,32,2,3).shape)

输出结果

torch.Size([1, 32, 4, 5])
torch.Size([4, 1024, 8, 15])
posted @ 2020-10-05 19:56  gy77  阅读(2854)  评论(0编辑  收藏  举报