g
y
7
7
7
7

完全背包问题 :背包dp

题目描述:

N种物品和一个容量是 V 的背包,每种物品都有无限件可用。i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

输入格式

第一行两个整数N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

10

#include<iostream>
#include<algorithm>
using namespace std;
int n, V, v, w,dp[1010];		//放在全局变量 就初始化为零
int main() {
	cin >> n >> V;
	for (int i = 0; i < n; i++) {
		cin >> v >> w;			//不用数组,可以降低空间
		for (int j = v; j <= V; j++) {			//直接从v开始枚举
			dp[j] = max(dp[j], dp[j - v] + w);		//dp[j]不放  dp[j-v]+w放 
		}
	}
	cout << dp[V] << "\n";
	return 0;
}

 

posted @ 2019-03-03 14:41  gy77  阅读(164)  评论(0编辑  收藏  举报