Android软件开发之高斯模糊问题

之前看到Android软件中用到和IOS系统类似的模糊效果,自己琢磨着也想做一个,于是在网上搜索了很多的相关资料,发现这篇博客《Android高级模糊技术》写得特别好,所以就开始好好地研究。

等到我把这个功能做到软件上,问题出现了,什么问题呢?

本来是准备用模糊图片来作为软件全屏界面的背景,可是布局显示的模糊图片在右下边缘一直出现黑色的边,不能铺满整个屏幕。一开始以为是模糊的参数需要调整,模糊后的图片变小了,但是把模糊后的图片的height和width打印出来,发没有问题。

后来我想到,实际使用的图片比屏幕的尺寸小一点,而模糊处理的过程之前并没有对图片大小进行调整,导致输出的模糊图片虽然和视图(屏幕)大小一致,但是图片的模糊区域却和原图片相同大小,从而留下了空余的部分——黑色的边缘。于是又写了一个缩放图片的工具类,在模糊处理之前来同步图片和视图(屏幕)的大小,发现问题解决!

FastBlur.java

 该文件是图片模糊的像素处理类,直接放入工程中

package com.kuk.tools;

import android.graphics.Bitmap;

public class FastBlur {

    public static Bitmap doBlur(Bitmap sentBitmap, int radius, boolean canReuseInBitmap) {

        // Stack Blur v1.0 from
        // http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html
        //
        // Java Author: Mario Klingemann <mario at quasimondo.com>
        // http://incubator.quasimondo.com
        // created Feburary 29, 2004
        // Android port : Yahel Bouaziz <yahel at kayenko.com>
        // http://www.kayenko.com
        // ported april 5th, 2012

        // This is a compromise between Gaussian Blur and Box blur
        // It creates much better looking blurs than Box Blur, but is
        // 7x faster than my Gaussian Blur implementation.
        //
        // I called it Stack Blur because this describes best how this
        // filter works internally: it creates a kind of moving stack
        // of colors whilst scanning through the image. Thereby it
        // just has to add one new block of color to the right side
        // of the stack and remove the leftmost color. The remaining
        // colors on the topmost layer of the stack are either added on
        // or reduced by one, depending on if they are on the right or
        // on the left side of the stack.
        //
        // If you are using this algorithm in your code please add
        // the following line:
        //
        // Stack Blur Algorithm by Mario Klingemann <mario@quasimondo.com>

        Bitmap bitmap;
        if (canReuseInBitmap) {
            bitmap = sentBitmap;
        } else {
            bitmap = sentBitmap.copy(sentBitmap.getConfig(), true);
        }

        if (radius < 1) {
            return (null);
        }

        int w = bitmap.getWidth();
        int h = bitmap.getHeight();

        int[] pix = new int[w * h];
        bitmap.getPixels(pix, 0, w, 0, 0, w, h);

        int wm = w - 1;
        int hm = h - 1;
        int wh = w * h;
        int div = radius + radius + 1;

        int r[] = new int[wh];
        int g[] = new int[wh];
        int b[] = new int[wh];
        int rsum, gsum, bsum, x, y, i, p, yp, yi, yw;
        int vmin[] = new int[Math.max(w, h)];

        int divsum = (div + 1) >> 1;
        divsum *= divsum;
        int dv[] = new int[256 * divsum];
        for (i = 0; i < 256 * divsum; i++) {
            dv[i] = (i / divsum);
        }

        yw = yi = 0;

        int[][] stack = new int[div][3];
        int stackpointer;
        int stackstart;
        int[] sir;
        int rbs;
        int r1 = radius + 1;
        int routsum, goutsum, boutsum;
        int rinsum, ginsum, binsum;

        for (y = 0; y < h; y++) {
            rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
            for (i = -radius; i <= radius; i++) {
                p = pix[yi + Math.min(wm, Math.max(i, 0))];
                sir = stack[i + radius];
                sir[0] = (p & 0xff0000) >> 16;
                sir[1] = (p & 0x00ff00) >> 8;
                sir[2] = (p & 0x0000ff);
                rbs = r1 - Math.abs(i);
                rsum += sir[0] * rbs;
                gsum += sir[1] * rbs;
                bsum += sir[2] * rbs;
                if (i > 0) {
                    rinsum += sir[0];
                    ginsum += sir[1];
                    binsum += sir[2];
                } else {
                    routsum += sir[0];
                    goutsum += sir[1];
                    boutsum += sir[2];
                }
            }
            stackpointer = radius;

            for (x = 0; x < w; x++) {

                r[yi] = dv[rsum];
                g[yi] = dv[gsum];
                b[yi] = dv[bsum];

                rsum -= routsum;
                gsum -= goutsum;
                bsum -= boutsum;

                stackstart = stackpointer - radius + div;
                sir = stack[stackstart % div];

                routsum -= sir[0];
                goutsum -= sir[1];
                boutsum -= sir[2];

                if (y == 0) {
                    vmin[x] = Math.min(x + radius + 1, wm);
                }
                p = pix[yw + vmin[x]];

                sir[0] = (p & 0xff0000) >> 16;
                sir[1] = (p & 0x00ff00) >> 8;
                sir[2] = (p & 0x0000ff);

                rinsum += sir[0];
                ginsum += sir[1];
                binsum += sir[2];

                rsum += rinsum;
                gsum += ginsum;
                bsum += binsum;

                stackpointer = (stackpointer + 1) % div;
                sir = stack[(stackpointer) % div];

                routsum += sir[0];
                goutsum += sir[1];
                boutsum += sir[2];

                rinsum -= sir[0];
                ginsum -= sir[1];
                binsum -= sir[2];

                yi++;
            }
            yw += w;
        }
        for (x = 0; x < w; x++) {
            rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
            yp = -radius * w;
            for (i = -radius; i <= radius; i++) {
                yi = Math.max(0, yp) + x;

                sir = stack[i + radius];

                sir[0] = r[yi];
                sir[1] = g[yi];
                sir[2] = b[yi];

                rbs = r1 - Math.abs(i);

                rsum += r[yi] * rbs;
                gsum += g[yi] * rbs;
                bsum += b[yi] * rbs;

                if (i > 0) {
                    rinsum += sir[0];
                    ginsum += sir[1];
                    binsum += sir[2];
                } else {
                    routsum += sir[0];
                    goutsum += sir[1];
                    boutsum += sir[2];
                }

                if (i < hm) {
                    yp += w;
                }
            }
            yi = x;
            stackpointer = radius;
            for (y = 0; y < h; y++) {
                // Preserve alpha channel: ( 0xff000000 & pix[yi] )
                pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum];

                rsum -= routsum;
                gsum -= goutsum;
                bsum -= boutsum;

                stackstart = stackpointer - radius + div;
                sir = stack[stackstart % div];

                routsum -= sir[0];
                goutsum -= sir[1];
                boutsum -= sir[2];

                if (x == 0) {
                    vmin[y] = Math.min(y + r1, hm) * w;
                }
                p = x + vmin[y];

                sir[0] = r[p];
                sir[1] = g[p];
                sir[2] = b[p];

                rinsum += sir[0];
                ginsum += sir[1];
                binsum += sir[2];

                rsum += rinsum;
                gsum += ginsum;
                bsum += binsum;

                stackpointer = (stackpointer + 1) % div;
                sir = stack[stackpointer];

                routsum += sir[0];
                goutsum += sir[1];
                boutsum += sir[2];

                rinsum -= sir[0];
                ginsum -= sir[1];
                binsum -= sir[2];

                yi += w;
            }
        }

        bitmap.setPixels(pix, 0, w, 0, 0, w, h);

        return (bitmap);
    }
}
FastBlur

 

PictureZoom.java

此文件是缩放图片类

 1 import android.content.Context;
 2 import android.graphics.Bitmap;
 3 import android.graphics.Matrix;
 4 
 5 /**
 6  * 此类的功能是用来缩放图片
 7  * <p>
 8  * 防止图片大小和屏幕大小不一致,造成模糊处理后会出现图片显示异常
 9  * </p>
10  * @author Macneil.Gu
11  */
12 public class PictureZoom {
13 
14     private Context context;
15 
16     public PictureZoom(Context context) {
17         this.context = context;
18     }
19     
20     /**
21      * 缩放图片至指定的大小
22      * 
23      * @param bitmap Bitmap格式的图片
24      * @param x 指定的宽
25      * @param y 指定的长
26      * @return 缩放后的指定大小图片
27      */
28     public Bitmap Zoom(Bitmap bitmap, float x, float y) {
29         //图片的宽和高
30         int width = bitmap.getWidth();
31         int height = bitmap.getHeight();
32         
33         //原图片和指定图片宽高比(缩放率),指定/原
34         float sx = x / width;
35         float sy = y / height;
36         
37         //缩放图片动作
38         Matrix mtr = new Matrix();
39         mtr.postScale(sx, sy);
40         
41         //创建新的图片
42         Bitmap bm = Bitmap.createBitmap(bitmap, 0, 0, width, height, mtr, true);
43         return bm;
44     }
45 
46 }

 

MainActivity.java

高斯模糊处理函数,这里对原来的函数修改了一点点

 1     /**
 2      * 高斯模糊处理
 3      * <p>
 4      * <code>将图片剪裁成1/8后进行模糊处理,可以大大减少模糊处理的时间,提高代码执行效率</code>
 5      * </p>
 6      * @param bitmap 需要模糊处理的图片
 7      * @param view 显示图片的视图
 8      */
 9     private void blur(Bitmap bitmap, View view) {
10         float scaleFactor = 8;
11         float radius = 2;
12 
13         Bitmap overlay = Bitmap.createBitmap(
14                 (int) (view.getMeasuredWidth() / scaleFactor),
15                 (int) (view.getMeasuredHeight() / scaleFactor),
16                 Bitmap.Config.ARGB_8888);
17 
18         Canvas canvas = new Canvas(overlay);
19         canvas.translate(-view.getLeft() / scaleFactor, -view.getTop()
20                 / scaleFactor);
21         canvas.scale(1 / scaleFactor, 1 / scaleFactor);
22         Paint paint = new Paint();
23         paint.setFlags(Paint.FILTER_BITMAP_FLAG); // 双缓冲机制
24         canvas.drawBitmap(bitmap, 0, 0, paint);
25 
26         overlay = FastBlur.doBlur(overlay, (int) radius, true);
27         view.setBackgroundDrawable(new BitmapDrawable(getResources(), overlay));
28     }

>>原博文的注解:

● scaleFactor提供了需要缩小的等级,在代码中我把bitmap的尺寸缩小到原图的1/8。因为这个bitmap在模糊处理时会先被缩小然后再放大,所以在我的模糊算法中就不用radius这个参数了,所以把它设成2。

● 接着需要创建bitmap,这个bitmap比最后需要的小八倍。

● 请注意我给Paint提供了FILTER_BITMAP_FLAG标示,这样的话在处理bitmap缩放的时候,就可以达到双缓冲的效果,模糊处理的过程就更加顺畅了。

● 接下来和之前一样进行模糊处理操作,这次的图片小了很多,幅度也降低了很多,所以模糊过程非常快。

● 把模糊处理后的图片作为背景,它会自动进行放大操作的。

 

调用上述的模糊处理函数,对指定图片模糊处理,并显示到布局的ImageView上。

 1  // 获取窗口服务
 2  WindowManager wm = (WindowManager) getSystemService(Context.WINDOW_SERVICE);
 3  
 4  // 缩放图片
 5  PictureZoom pz = new PictureZoom(this);
 6  // 把图片缩放到窗口的长宽
 7  Bitmap mybm = pz.Zoom(bm, wm.getDefaultDisplay().getWidth(), wm.getDefaultDisplay().getHeight()); 
 8 
 9  // 模糊处理,blurImage是ImageView控件,这里是作为背景显示的
10  blur(mybm, blurImage);

 

>>将上述的三个文件放在同一个包下使用,否则需要导入文件使用。如果大家喜欢剖根究底,可以仔细阅读原博文。

原博文出处:Android高级模糊技术

posted @ 2015-03-09 00:27  禾希  阅读(703)  评论(0编辑  收藏  举报