#encoding=utf8
import random
import numpy as np
import math
def sigmoid(x):
return 1. / (1 + np.exp(-x))
def sigmoid_derivative(values):
return values*(1-values)
def tanh_derivative(values):
return 1. - values ** 2
# createst uniform random array w/ values in [a,b) and shape args
def rand_arr(a, b, *args):
np.random.seed(0)
return np.random.rand(*args) * (b - a) + a
class LstmParam:
#初始化Lstm参数函数
def __init__(self, mem_cell_ct, x_dim):
self.mem_cell_ct = mem_cell_ct
self.x_dim = x_dim
concat_len = x_dim + mem_cell_ct
# weight matrices
#self.wg,self.wi等都是100行150列的向量
self.wg = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
self.wi = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
self.wf = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
self.wo = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
# bias terms
self.bg = rand_arr(-0.1, 0.1, mem_cell_ct)
self.bi = rand_arr(-0.1, 0.1, mem_cell_ct)
self.bf = rand_arr(-0.1, 0.1, mem_cell_ct)
self.bo = rand_arr(-0.1, 0.1, mem_cell_ct)
# diffs (derivative of loss function w.r.t. all parameters)
self.wg_diff = np.zeros((mem_cell_ct, concat_len))
self.wi_diff = np.zeros((mem_cell_ct, concat_len))
self.wf_diff = np.zeros((mem_cell_ct, concat_len))
self.wo_diff = np.zeros((mem_cell_ct, concat_len))
self.bg_diff = np.zeros(mem_cell_ct)
self.bi_diff = np.zeros(mem_cell_ct)
self.bf_diff = np.zeros(mem_cell_ct)
self.bo_diff = np.zeros(mem_cell_ct)
def apply_diff(self, lr = 1):
self.wg -= lr * self.wg_diff
self.wi -= lr * self.wi_diff
self.wf -= lr * self.wf_diff
self.wo -= lr * self.wo_diff
self.bg -= lr * self.bg_diff
self.bi -= lr * self.bi_diff
self.bf -= lr * self.bf_diff
self.bo -= lr * self.bo_diff
# reset diffs to zero
self.wg_diff = np.zeros_like(self.wg)
self.wi_diff = np.zeros_like(self.wi)
self.wf_diff = np.zeros_like(self.wf)
self.wo_diff = np.zeros_like(self.wo)
self.bg_diff = np.zeros_like(self.bg)
self.bi_diff = np.zeros_like(self.bi)
self.bf_diff = np.zeros_like(self.bf)
self.bo_diff = np.zeros_like(self.bo)
class LstmState:
def __init__(self, mem_cell_ct, x_dim):
#g对应图中tanh Ct'神经元
self.g = np.zeros(mem_cell_ct)
#i对应图中it 神经元
self.i = np.zeros(mem_cell_ct)
#i对应图中ft 神经元
self.f = np.zeros(mem_cell_ct)
#o对应图中ot 神经元
self.o = np.zeros(mem_cell_ct)
#s对应图中Ct-1神经元
self.s = np.zeros(mem_cell_ct)
#s对应图中ht神经元
self.h = np.zeros(mem_cell_ct)
self.bottom_diff_h = np.zeros_like(self.h)
self.bottom_diff_s = np.zeros_like(self.s)
class LstmNode:
def __init__(self, lstm_param, lstm_state):
# store reference to parameters and to activations
self.state = lstm_state
self.param = lstm_param
# non-recurrent input concatenated with recurrent input
self.xc = None
def bottom_data_is(self, x, s_prev = None, h_prev = None):
#正向传播
# if this is the first lstm node in the network
#s_prev和h_prev分别表示Ct-1和ht-1节点,当此2个节点为第一个神经元时,用0初始化
if s_prev is None: s_prev = np.zeros_like(self.state.s)
if h_prev is None: h_prev = np.zeros_like(self.state.h)
# save data for use in backprop
self.s_prev = s_prev
self.h_prev = h_prev
# concatenate x(t) and h(t-1)
#水平拉平[1,2,3],[4,5,6]执行np.hstack后变成【1,2,3,4,5,6】
xc = np.hstack((x, h_prev))
#g对应图中C't
self.state.g = np.tanh(np.dot(self.param.wg, xc) + self.param.bg)
self.state.i = sigmoid(np.dot(self.param.wi, xc) + self.param.bi)
self.state.f = sigmoid(np.dot(self.param.wf, xc) + self.param.bf)
self.state.o = sigmoid(np.dot(self.param.wo, xc) + self.param.bo)
self.state.s = self.state.g * self.state.i + s_prev * self.state.f
self.state.h = self.state.s * self.state.o
self.xc = xc
def top_diff_is(self, top_diff_h, top_diff_s):
#反向传播
# notice that top_diff_s is carried along the constant error carousel
ds = self.state.o * top_diff_h + top_diff_s
do = self.state.s * top_diff_h
di = self.state.g * ds