Unique Paths II [LeetCode]

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

Solution: The same to Unique Paths, just add obstacle check.

 1 class Solution {
 2 public:
 3     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
 4         if(obstacleGrid.size() <= 0 || obstacleGrid[0].size() <= 0)
 5             return 0;
 6 
 7         int row = obstacleGrid.size();
 8         int column = obstacleGrid[0].size();
 9         vector<int> path_nums(column, 0);
10         for(int i = 0; i < row; i ++) {
11             int row_idx = row - 1 - i;
12             for(int j = 0; j < column; j ++ ) {
13                 int column_idx = column - 1 - j;
14                 if(i == 0 && j == 0 && obstacleGrid[row_idx][column_idx] == 1)
15                     return 0;
16                 if(i == 0 && j == 0 && obstacleGrid[row_idx][column_idx] == 0) {
17                     path_nums[j] = 1;
18                 }else {
19                     if(obstacleGrid[row_idx][column_idx] == 1) {
20                         path_nums[j] = 0;
21                     }else {
22                         if(j != 0)
23                             path_nums[j] += path_nums[j - 1];
24                     }
25                 }
26             } 
27         }
28         return path_nums[column - 1];
29     }
30 };

 

posted @ 2013-11-02 12:38  假日笛声  阅读(206)  评论(0编辑  收藏  举报