spark常见算子的区别

一、reduceByKey和groupByKey的区别

1、reduceByKey:按照 key进行聚合,在 shuffle 之前有 combine(预聚合)操作,返回结果是 RDD[k,v]。

2、groupByKey:按照 key进行分组,直接进行 shuffle。开发指导:reduceByKey比 groupByKey,建议使用。但是需要注意是否会影响业务逻辑。

1、reduceByKey(func):使用 func 函数合并具有相同键的值。

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map((_,1))
pairRdd.reduceByKey(_+_).collect.foreach(println)

上例中,我们先是建立了一个 list,然后建立通过这个 list 集合建立一个 rdd;然后我们通过 map 函数将 list 的 rdd 转化成键值对形式的 rdd;然后我们通过 reduceByKey 方法对具有相同 key 的值进行 func(_+_)的累加操作。

(hive,1)
(spark,2)
(hadoop,1)
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[127] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[128] at map at command-3434610298353610:3 

pairRdd.collect.foreach(println) //打印pairRdd

(hive,1)
(spark,1)
(hadoop,1)
(spark,1)

我们需要留意的事情是,我们调用了reduceByKey操作的返回的结果类型是

org.apache.spark.rdd.RDD[(String, Int)]

注意,我们这里的collect()方法的作用是收集分布在各个worker的数据到driver节点。

如果不使用这个方法,每个worker的数据只在自己本地显示,并不会在driver节点显示。

 

2、groupByKey():对具有相同key的value进行分组。

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.groupByKey().collect.foreach(println)

得出的结果为

(hive,CompactBuffer(1))
(spark,CompactBuffer(1, 1))
(hadoop,CompactBuffer(1))
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[130] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[131] at map at command-3434610298353610:3

CompactBuffer:CompactBuffer并不是scala里定义的数据结构,而是spark里的数据结构,它继承自一个迭代器和序列,所以它的返回值是一个很容易进行循环遍历的集合。

  可以看到,结果并不是把具有相同key值进行相加,而是就简单的进行了分组,生成一个sequence。因此,我们可以把groupByKey()当作reduceByKey(func)操作的一部分,reduceByKey(func)先是对rdd进行groupByKey()然后在对每个分组进行func操作。

pairRdd.reduceByKey(_+_).collect.foreach(println)

等同于
pairRdd.groupByKey().map(t => (t._1,t._2.sum)).collect.foreach(println)

  这里通过groupByKey()后调用map遍历每个分组,然后通过t => (t._1,t._2.sum)对每个分组的值进行累加。因为groupByKey()操作是把具有相同类型的key收集到一起聚合成一个集合,集合中有个sum方法,对所有元素进行求和。

注意:(k,v)形式的数据,我们可以通过 ._1,._2 来访问键和值,用占位符表示就是 _._1,_._2,这里前面的两个下划线的含义是不同的,前边下划线是占位符,后边的是访问方式。 我们记不记得 ._1,._2,._3 是元组的访问方式。我们可以把键值看成二维的元组。

 

3、区别:

reduceByKey()对于每个key对应的多个value进行了merge操作,最重要的是它能够先在本地进行merge操作。merge可以通过func自定义。

groupByKey()也是对每个key对应的多个value进行操作,但是只是汇总生成一个sequence,本身不能自定义函数,只能通过额外通过map(func)来实现。

 

使用reduceByKey()的时候,本地的数据先进行merge然后再传输到不同节点再进行merge,最终得到最终结果。

而使用groupByKey()的时候,并不进行本地的merge,全部数据传出,得到全部数据后才会进行聚合成一个sequence,

groupByKey()传输速度明显慢于reduceByKey()。

虽然groupByKey().map(func)也能实现reduceByKey(func)功能,但是,优先使用reduceByKey(func)

 

转载博客:https://www.cnblogs.com/zzhangyuhang/p/9001523.html

 

二、map和flatMap的区别:

https://www.cnblogs.com/Sarah-2017/p/6378135.html

 

三、repartition和partitionBy的区别:

repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 PairRDD时,结果却不一样:

 不难发现,其实 partitionBy 的结果才是我们所预期的,我们打开 repartition 的源码进行查看:

/**
   * Return a new RDD that has exactly numPartitions partitions.
   *
   * Can increase or decrease the level of parallelism in this RDD. Internally, this uses
   * a shuffle to redistribute data.
   *
   * If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
   * which can avoid performing a shuffle.
   *
   * TODO Fix the Shuffle+Repartition data loss issue described in SPARK-23207.
   */
  def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    coalesce(numPartitions, shuffle = true)
  }

  /**
   * Return a new RDD that is reduced into `numPartitions` partitions.
   *
   * This results in a narrow dependency, e.g. if you go from 1000 partitions
   * to 100 partitions, there will not be a shuffle, instead each of the 100
   * new partitions will claim 10 of the current partitions. If a larger number
   * of partitions is requested, it will stay at the current number of partitions.
   *
   * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
   * this may result in your computation taking place on fewer nodes than
   * you like (e.g. one node in the case of numPartitions = 1). To avoid this,
   * you can pass shuffle = true. This will add a shuffle step, but means the
   * current upstream partitions will be executed in parallel (per whatever
   * the current partitioning is).
   *
   * @note With shuffle = true, you can actually coalesce to a larger number
   * of partitions. This is useful if you have a small number of partitions,
   * say 100, potentially with a few partitions being abnormally large. Calling
   * coalesce(1000, shuffle = true) will result in 1000 partitions with the
   * data distributed using a hash partitioner. The optional partition coalescer
   * passed in must be serializable.
   */
  def coalesce(numPartitions: Int, shuffle: Boolean = false,
               partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
              (implicit ord: Ordering[T] = null)
      : RDD[T] = withScope {
    require(numPartitions > 0, s"Number of partitions ($numPartitions) must be positive.")
    if (shuffle) {
      /** Distributes elements evenly across output partitions, starting from a random partition. */
      val distributePartition = (index: Int, items: Iterator[T]) => {
        var position = new Random(hashing.byteswap32(index)).nextInt(numPartitions)
        items.map { t =>
          // Note that the hash code of the key will just be the key itself. The HashPartitioner
          // will mod it with the number of total partitions.
          position = position + 1
          (position, t)
        }
      } : Iterator[(Int, T)]

      // include a shuffle step so that our upstream tasks are still distributed
      new CoalescedRDD(
        new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
        new HashPartitioner(numPartitions)),
        numPartitions,
        partitionCoalescer).values
    } else {
      new CoalescedRDD(this, numPartitions, partitionCoalescer)
    }
  }

 

即使是RairRDD也不会使用自己的key,repartition 其实使用了一个随机生成的数来当做 Key,而不是使用原来的 Key!!

 

四、repartition和coalesce的区别

https://blog.csdn.net/weixin_44563670/article/details/112799231

 

五、foreach和foreach partition

  1. foreach
    • foreach 是一个RDD的动作操作,用于对RDD中的每个元素执行指定的操作。
    • 操作是在驱动程序(Driver Program)中执行的,即在调用 foreach 的节点上运行。
    • 这意味着对每个元素的处理是单线程的,可能会受到驱动程序资源的限制。
scala
val data = sc.parallelize(Seq(1, 2, 3, 4, 5)) data.foreach(x => println(x))
  1. foreachPartition
    • foreachPartition 也是一个RDD的动作操作,与 foreach 不同的是,它是基于分区的。
    • 对于RDD中的每个分区,都会调用一次指定的函数。
    • 这样可以在每个分区上进行并行处理,提高了并发性,尤其适用于执行一些需要连接外部资源(例如数据库连接)的操作。
scala
val data = sc.parallelize(Seq(1, 2, 3, 4, 5), 2) data.foreachPartition(partition => { // 在每个分区上执行操作 partition.foreach(x => println(x)) })

总体来说,foreach 适用于一些无需外部资源的简单操作,而 foreachPartition 适用于需要在每个分区上执行一些复杂的外部操作的情况。选择合适的方法取决于具体的业务需求。需要注意的是,在使用 foreachPartition 时,确保连接池等资源的正确管理,以避免资源泄漏。

 

六、map 和map partition

在Spark中,mapmapPartitions 是用于对RDD进行转换的两个操作,它们之间有一些关键的区别:

  1. map
    • map 是对RDD中的每个元素应用指定的函数,并返回一个新的RDD。
    • 操作是以元素为单位进行的,即对每个元素都会执行一次指定的函数。
    • 这意味着对于一个包含N个元素的RDD,map 中的函数将会被调用N次。
scala
val data = sc.parallelize(Seq(1, 2, 3, 4, 5)) val result = data.map(x => x * 2)
  1. mapPartitions
    • mapPartitions 是对RDD中的每个分区应用指定的函数,并返回一个新的RDD。
    • 操作是以分区为单位进行的,即对每个分区都会执行一次指定的函数。
    • 这意味着对于一个包含M个分区的RDD,mapPartitions 中的函数将会被调用M次,而不是对每个元素都调用。
scala
val data = sc.parallelize(Seq(1, 2, 3, 4, 5), 2) val result = data.mapPartitions(partition => { // 在每个分区上执行操作 partition.map(x => x * 2) })

关键区别:

  • map 是以元素为单位进行转换,适用于一些不需要整个分区信息的简单操作。
  • mapPartitions 是以分区为单位进行转换,适用于一些需要对整个分区进行操作的场景。由于对每个分区执行一次函数,相对于map,它可以减少函数调用的开销,提高效率。然而,需要注意在使用mapPartitions时,函数中的变量可能会在整个分区上保持状态,因此需要慎重管理外部资源。

选择使用哪个操作取决于具体的业务需求,以及对性能和资源管理的需求。

 

posted @ 2019-12-24 11:14  guoyu1  阅读(904)  评论(0编辑  收藏  举报