梯度,也即该物理参数的变化率,导数

梯度,也即该物理参数的变化率。

在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率

 

 

 

形式化定义[编辑]

一个标量函数 \varphi 的梯度记为:

\nabla \varphi\operatorname{grad} \varphi

其中\nablanabla)表示向量微分算子

\nabla \varphi 在三维直角坐标中表示为

\nabla \varphi =\begin{pmatrix}
{\frac{\partial \varphi}{\partial x}},  
{\frac{\partial \varphi}{\partial y}}, 
{\frac{\partial \varphi}{\partial z}}
\end{pmatrix}

参看偏导数向量

实标量函数的梯度[来源请求][编辑]

相对于n×1向量x的梯度算子记作\nabla_{\boldsymbol{x}},定义为

\nabla_{\boldsymbol{x}} \overset{\underset{\mathrm{def}}{}}{=} \left[ \frac{\partial }{\partial x_1}, \frac{\partial }{\partial x_2},\cdots,\frac{\partial }{\partial x_n} \right]^T=\frac{\partial }{\partial \boldsymbol{x}}

对向量的梯度[编辑]

以n×1实向量x为变元的实标量函数f(x)相对于x的梯度为一n×1列向量x,定义为

\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) \overset{\underset{\mathrm{def}}{}}{=} \left[ \frac{\partial f(\boldsymbol{x}) }{\partial x_1}, \frac{\partial f(\boldsymbol{x})}{\partial x_2},\cdots,\frac{\partial f(\boldsymbol{x})}{\partial x_n} \right]^T=\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}

m维行向量函数\boldsymbol{f}(\boldsymbol{x})=[f_1(\boldsymbol{x}),f_2(\boldsymbol{x}),\cdots,f_m(\boldsymbol{x})]相对于n维实向量x的梯度为一n×m矩阵,定义为

\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) \overset{\underset{\mathrm{def}}{}}{=}
\begin{bmatrix}
\frac{\partial f_1(\boldsymbol{x})}{\partial x_1} &\frac{\partial f_2(\boldsymbol{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\boldsymbol{x})}{\partial x_1}      \\
\frac{\partial f_1(\boldsymbol{x})}{\partial x_2} &\frac{\partial f_2(\boldsymbol{x})}{\partial x_2} & \cdots & \frac{\partial f_m(\boldsymbol{x})}{\partial x_2}      \\
\vdots &\vdots & \ddots & \vdots \\
\frac{\partial f_1(\boldsymbol{x})}{\partial x_n} &\frac{\partial f_2(\boldsymbol{x})}{\partial x_n} & \cdots &\frac{\partial f_m(\mathbf{x})}{\partial x_n}     \\
\end{bmatrix}=\frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial \boldsymbol{x}}

对矩阵的梯度[编辑]

实标量函数\boldsymbol{f}(\boldsymbol{A})相对于m×n实矩阵A的梯度为一m×n矩阵,简称梯度矩阵,定义为

\nabla_{\boldsymbol{A}} \boldsymbol f(\boldsymbol{A}) \overset{\underset{\mathrm{def}}{}}{=}
\begin{bmatrix}
\frac{\partial f(\boldsymbol{A})}{\partial a_{11}} &\frac{\partial f(\boldsymbol{A})}{\partial a_{12}} & \cdots & \frac{\partial f(\boldsymbol{A})}{\partial a_{1n}}      \\
\frac{\partial f(\boldsymbol{A})}{\partial a_{21}} &\frac{\partial f(\boldsymbol{A})}{\partial a_{22}} & \cdots & \frac{\partial f(\boldsymbol{A})}{\partial a_{2n}}      \\
\vdots &\vdots & \ddots & \vdots \\
\frac{\partial f(\boldsymbol{A})}{\partial a_{m1}} &\frac{\partial f(\boldsymbol{A})}{\partial a_{m2}} & \cdots &\frac{\partial f(\mathbf{A})}{\partial a_{mn}}     \\
\end{bmatrix}=\frac{\partial \boldsymbol{f}(\boldsymbol{A})}{\partial \boldsymbol{A}}
posted @   tsguosj  阅读(739)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示