分治FFT
分治FFT
概述
严格的分治FFT为“一般形式”,而我们把所有带有FFT的分治都称为分治FFT,所以这个名称并没有什么意义。
分治FFT代码比较复杂,低阶的比赛里应该不会出现。
一般形式
严格的分治FFT负责解决类似\(\displaystyle b_k=\sum^{k-1}_{i=1}{b_ia_{k-i}}\)的数列,其中整个式子的形状符合卷积,且所求数列的每一项都依赖于前面的项。
已知数组\(a\),求数组\(b\),其中\(\displaystyle b_k=\sum^{k-1}_{i=1}{b_ia_{k-i}}\)
考虑分治,对于区间\([l,r)\),先计算\([l,m)\)的答案。对于\(k\geq m\),将\(b_k\)拆成\(\displaystyle \sum^{m-1}_{i=0}b_ia_{k-i}\)和\(\displaystyle \sum^{k-1}_{i=m}b_ia_{k-i}\)两部分,后者可以给数组下标添加偏移量之后递归计算,而前者可以通过普通的卷积计算。
总时间复杂度为\(\Theta(n \log^2 n)\)。
实现
假设我们求出了\(l\to mid\)的答案,要求这些点对\(mid+1\to r\)的影响,那么对右半边点\(x\)的贡献为:\(\displaystyle w_x=\sum_{i=l}^{mid} f[i] * g[x-i]\)这部分可以利用卷积来快速计算。计算完以后,答案直接加到答案数组就可以了。需要注意的是,如果要求左边点对右边点的影响,首先整个区间以左对该区间的贡献应该先求出。所以分治过程为先分治左边,在求出中间,然后在递归右边。
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN=1e6+10;
const LL MOD=998244353,G=3,iG=332748118;
inline LL fpm(LL base,LL p){
LL ret=1;
while(p){
if(p&1)
ret=ret*base%MOD;
base=base*base%MOD;
p>>=1;
}
return ret;
}
void exgcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=1;
y=0;
return;
}
exgcd(b,a%b,y,x);
y-=x*(a/b);
}
inline LL inv(LL x){
LL ii,jj;
exgcd(x,MOD,ii,jj);
return (ii%MOD+MOD)%MOD;
}
int lim,rev[MAXN],N,L;
inline void prec(int l,int r){
lim=1;
L=0;
while(lim<r-l){
L++;
lim<<=1;
}
for(int i=0;i<lim;i++)
rev[i]=rev[i>>1]>>1|(i&1)<<(L-1);
}
inline void NTT(LL *a,int type){
for(int i=0;i<lim;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int hf=1;hf<lim;hf<<=1){
int len=hf<<1;
LL Wn=fpm(type==1?G:iG,(MOD-1)/len);
for(int j=0;j<lim;j+=len){
LL w=1;
for(int k=0;k<hf;k++){
LL t1=a[j+k],t2=a[j+k+hf]*w%MOD;
a[j+k]=(t1+t2)%MOD;
a[j+k+hf]=(t1-t2)%MOD;
w=w*Wn%MOD;
}
}
}
}
LL f[MAXN],g[MAXN],A[MAXN],B[MAXN];
inline void cdq(int l,int r){
if(l+1>=r||l>=N)
return;
int mid=(l+r)>>1;
cdq(l,mid);
prec(l,r);
memcpy(A,f+l,((r-l)/2)<<3);
memcpy(B,g,(r-l)<<3);
memset(A+(r-l)/2,0,((r-l)/2)<<3);
NTT(A,1);
NTT(B,1);
for(int i=0;i<r-l;i++)
A[i]=A[i]*B[i]%MOD;
NTT(A,-1);
int ii=inv(r-l);
for(int i=0;i<r-l;i++)
A[i]=A[i]*ii%MOD;
for(int i=(r-l)>>1;i<r-l;i++)
f[i+l]=(f[i+l]+A[i])%MOD;
cdq(mid,r);
}
int main(){
scanf("%d",&N);
for(int i=1;i<N;i++)
scanf("%lld",g+i);
prec(0,N);
f[0]=1;
cdq(0,lim);
for(int i=0;i<N;i++)
printf("%lld ",(f[i]+MOD)%MOD);
return 0;
}
例题
P4721 【模板】分治 FFT
见“实现”
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN=1e6+10;
const LL MOD=998244353,G=3,iG=332748118;
inline LL fpm(LL base,LL p){
LL ret=1;
while(p){
if(p&1)
ret=ret*base%MOD;
base=base*base%MOD;
p>>=1;
}
return ret;
}
void exgcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=1;
y=0;
return;
}
exgcd(b,a%b,y,x);
y-=x*(a/b);
}
inline LL inv(LL x){
LL ii,jj;
exgcd(x,MOD,ii,jj);
return (ii%MOD+MOD)%MOD;
}
int lim,rev[MAXN],N,L;
inline void prec(int l,int r){
lim=1;
L=0;
while(lim<r-l){
L++;
lim<<=1;
}
for(int i=0;i<lim;i++)
rev[i]=rev[i>>1]>>1|(i&1)<<(L-1);
}
inline void NTT(LL *a,int type){
for(int i=0;i<lim;i++)
if(i<rev[i])
swap(a[i],a[rev[i]]);
for(int hf=1;hf<lim;hf<<=1){
int len=hf<<1;
LL Wn=fpm(type==1?G:iG,(MOD-1)/len);
for(int j=0;j<lim;j+=len){
LL w=1;
for(int k=0;k<hf;k++){
LL t1=a[j+k],t2=a[j+k+hf]*w%MOD;
a[j+k]=(t1+t2)%MOD;
a[j+k+hf]=(t1-t2)%MOD;
w=w*Wn%MOD;
}
}
}
}
LL f[MAXN],g[MAXN],A[MAXN],B[MAXN];
inline void cdq(int l,int r){
if(l+1>=r||l>=N)
return;
int mid=(l+r)>>1;
cdq(l,mid);
prec(l,r);
memcpy(A,f+l,((r-l)/2)<<3);
memcpy(B,g,(r-l)<<3);
memset(A+(r-l)/2,0,((r-l)/2)<<3);
NTT(A,1);
NTT(B,1);
for(int i=0;i<r-l;i++)
A[i]=A[i]*B[i]%MOD;
NTT(A,-1);
int ii=inv(r-l);
for(int i=0;i<r-l;i++)
A[i]=A[i]*ii%MOD;
for(int i=(r-l)>>1;i<r-l;i++)
f[i+l]=(f[i+l]+A[i])%MOD;
cdq(mid,r);
}
int main(){
scanf("%d",&N);
for(int i=1;i<N;i++)
scanf("%lld",g+i);
prec(0,N);
f[0]=1;
cdq(0,lim);
for(int i=0;i<N;i++)
printf("%lld ",(f[i]+MOD)%MOD);
return 0;
}