尾调用和尾递归
尾调用
尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。
//尾调用 function f(x) {return g(x);} //上面代码中,函数f的最后一步是调用函数g,这就叫尾调用 //不属于尾调用举例 // 情况一 function f(x){ let y = g(x); return y; } // 情况二 function f(x){ return g(x) + 1; } // 情况三 function f(x){ g(x); }
尾调用优化
尾调用之所以与其他调用不同,就在于它的特殊的调用位置。
我们知道,函数调用会在内存形成一个“调用记录”,又称“调用帧”(call frame),保存调用位置和内部变量等信息。如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到A,B的调用帧才会消失。如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个“调用栈”(call stack)。
尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧,因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。
function f() { let m = 1; let n = 2; return g(m + n); } f(); // 等同于 function f() { return g(3); } f(); // 等同于 g(3);
上面代码中,如果函数g不是尾调用,函数f就需要保存内部变量m和n的值、g的调用位置等信息。但由于调用g之后,函数f就结束了,所以执行到最后一步,完全可以删除 f(x) 的调用帧,只保留 g(3) 的调用帧。
这就叫做“尾调用优化”(Tail call optimization),即只保留内层函数的调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是“尾调用优化”的意义。
注意,只有不再用到外层函数的内部变量,内层函数的调用帧才会取代外层函数的调用帧,否则就无法进行“尾调用优化”。
尾递归
函数调用自身,称为递归。如果尾调用自身,就称为尾递归。
递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。 以斐波那契数列(Fibonacci)为例分析:
//普通递归 function Fibonacci (n) { if ( n <= 1 ) {return 1}; return Fibonacci(n - 1) + Fibonacci(n - 2); } Fibonacci(10); // 89 // Fibonacci(100) // Fibonacci(500) // 堆栈溢出了 //尾递归 function Fibonacci2 (n , ac1 = 1 , ac2 = 1) { if( n <= 1 ) {return ac2}; return Fibonacci2 (n - 1, ac2, ac1 + ac2); //保留一个调用记录,复杂度O(1) } Fibonacci2(100) // 573147844013817200000 Fibonacci2(1000) // 7.0330367711422765e+208 Fibonacci2(10000) // Infinity
递归函数的优化
尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。这样做的缺点是不太直观,解决办法有两种:
方法1:在尾递归函数之外,再提供一个正常形式的函数。
//尾递归 function Fibonacci2 (n , ac1 = 1 , ac2 = 1) { if( n <= 1 ) {return ac2}; return Fibonacci2 (n - 1, ac2, ac1 + ac2); } Fibonacci2(100) // 573147844013817200000 Fibonacci2(1000) // 7.0330367711422765e+208 Fibonacci2(10000) // Infinity //优化1 function tailFibonacci(n, ac1, ac2){ if( n <= 1 ) {return ac2}; return tailFibonacci (n - 1, ac2, ac1 + ac2); } function Fibonacci3(n){ return tailFibonacci(n, 1 , 1); } Fibonacci3(100) // 573147844013817200000
方法2:函数式编程有一个概念,叫做柯里化(currying),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。
//优化2 柯里化 function currying(fn, n1, n2) { return function (m) { return fn.call(this, m, n1, n2); }; } function tailFibonacci(n, ac1, ac2){ if( n <= 1 ) {return ac2}; return tailFibonacci (n - 1, ac2, ac1 + ac2); } const Fibonacci4 = currying(tailFibonacci,1,1); Fibonacci4(100) // 573147844013817200000