摘要:
在本篇文章中,我们讨论一下利用线性模型进行分类的有关问题。与回归问题不同,分类问题的输出不是一个连续的值,而是一个离散的量(k=1....K),在大多数场景中,classes之间通常是互斥的(disjiont),也就是说每一个输入只能属于一个类别,也就有了决策边界、决策面之说。在本文中,如果数据集的类别可以被线性决策面精确分开,那么该数据集就是线性可分的。在概率论模型中,如何是两类问题,我们可以用t=0,t=1去表示不同的类别。对于K>2时,我们用向量t=(0,1,0,0,0)T来表示,它表示5个类别中的第2类,用tk的值表示它属于类Ck的概率,使用p(x,t)对这种不确定性进行建模,从 阅读全文
posted @ 2012-09-05 22:37
Lei-Blog
阅读(311)
评论(0)
推荐(0)