偏微分方程数值解
1.求解拉普拉斯方程的狄利克雷法
求解在区域R = {(x,y): 0≤x≤a, 0≤y≤b}内的 uxx(x,y) + uyy(x,y) = 0 的近似解,而且满足条件 u(x,0) = f1(x), u(x,b) = f2(x), 其中0≤x≤a 且 u(0,y) = f3(y), u(a,y) = f4(y),其中 0≤y≤b。设Δx = Δy = h,而且存在整数n和m,使得 a = nh ,b = mh。
代码如下:
function [U,cnt]=dirich(f1,f2,f3,f4,a,b,h,tol,max1) %Input - f1,f2,f3,f4 are the function entered as a string % - a and b are the left and right end points % - h steps size % - tol is the tolerance % - max1 is maximum of iterations number %Output - U solution matrix;analogous to Table 10.6 % cnt is number of iterations % %其算法的思路是,先将内部网格点均取四个角点的平均值作为内部所有网格点的初值, %然后用SQR超松弛算法 %内部网格点的迭代值为初值点+余项,余项为拉普拉斯差分计算方程 %对每个网格点不断迭代,使得最终余项 relx趋近于0为止(满足拉普拉斯差分方程等于零特点)。 %Initialize parameters and U n=fix(a/h)+1; m=fix(b/h)+1; ave=(a*(feval(f1,0)+feval(f2,0))+b*(feval(f3,0)+feval(f4,0)))/(2*a+2*b); U=ave*ones(n,m); %Boundary conditions U(1,1:m)=feval(f3,0:h:(m-1)*h)'; U(n,1:m)=feval(f4,0:h:(m-1)*h)'; U(1:n,1)=feval(f1,0:h:(n-1)*h); U(1:n,m)=feval(f2,0:h:(n-1)*h); %SOR parameter w=4/(2+sqrt(4-(cos(pi/(n-1))+cos(pi/(m-1)))^2)); %Refine approximations and sweep operator throughout the grid err=1; cnt=0; while((err>tol)&&(cnt<=max1)) err=0; for j=2:m-1 for i=2:n-1 relx=w*(U(i,j+1)+U(i,j-1)+U(i+1,j)+U(i-1,j)-4*U(i,j))/4; U(i,j)=U(i,j)+relx; if (err<=abs(relx)) err=abs(relx); end end end cnt=cnt+1; end U=flipud(U');%flipud实现矩阵的上下翻转 end