浏览器
浏览器输入url,浏览器主进程接管,开一个下载线程,然后进行 http请求;
执行 dns 查询,建立 TLS 连接,向目标服务器发送请求,接收返回数据;
(Https连接过程需要在正式收发数据前建立TLS连接,确保安全性。TLS建立在TCP之上,建立TLS连接前需要TCP4次握手。然后进行TLS连接。在连接中要完成秘钥交换,交换算法不同,握手过程细节也会不同。)
响应内容可能为多种格式,这里记录为 html 格式的情况;
响应数据经过一系列检查、判断后,最终会传给呈现引擎,这时候导航结束,页面加载开始;
呈现引擎开始工作:(chrome webkit):
1. Browser进程下载html文件并将文件发送给renderer进程
2. renderer进程的GUI进程开始解析html文件来构建出DOM
3. 当遇到外源css时,Browser进程下载该css文件并发送回来,GUI线程再解析该文件,在这同时,html的解析也同时进行,但不会渲染(还未形成渲染树)
4. 当遇到内部css时,html的解析和css的解析同时进行
5. 继续解析html文件,当遇到外源js时,Browser进程下载该js文件并发送回来,此时,js引擎线程解析并执行js,因为GUI线程和js引擎线程互斥,所以GUI线程被挂起,停止继续解析html。直到js引擎线程空闲,GUI线程继续解析html。
6. 遇到内部js也是同理
7. 解析完html文件,形成了完整的DOM树,也解析完了css,形成了完整的CSSOM树,两者结合形成了render树
8. 根据render树来进行布局,若在布局的过程中发生了元素尺寸、位置、隐藏的变化或增加、删除元素时,则进行回流,修改
9. 根据render树进行绘制,若在布局的过程中元素的外观发生变换,则进行重绘
10. 将布局、绘制得到的各个简单图层的位图发送给Browser进程,由它来合并简单图层为复合图层,从而显示到页面上
11. 以上步骤就是html文件解析全过程,完成之后,如若当页面有元素的尺寸、大小、隐藏有变化时,重新布局计算回流,并修改页面中所有受影响的部分,如若当页面有元素的外观发生变化时,重绘
#、回流重绘
怎么去理解这两个概念呢?从字面上理解,重绘,重新绘画,重新上色,较难产生联想的是回流。
我们都知道,一个页面从加载到完成,首先是构建DOM树,然后根据DOM节点的几何属性形成render树(渲染树),当渲染树构建完成,页面就根据DOM树开始布局了,渲染树也根据设置的样式对应的渲染这些节点。
在这个过程中,回流与DOM树,渲染树有关,重绘与渲染树有关,怎么去理解呢?
比如我们增删DOM节点,修改一个元素的宽高,页面布局发生变化,DOM树结构发生变化,那么肯定要重新构建DOM树,而DOM树与渲染树是紧密相连的,DOM树构建完,渲染树也会随之对页面进行再次渲染,这个过程就叫回流。
当你给一个元素更换颜色,这样的行为是不会影响页面布局的,DOM树不会变化,但颜色变了,渲染树得重新渲染页面,这就是重汇。
你应该能感觉到,回流的代价要远大于重绘。且回流必然会造成重绘,但重绘不一定会造成回流。
题外话
1.由于display为none的元素在页面不需要渲染,渲染树构建不会包括这些节点;但visibility为hidden的元素会在渲染树中。因为display为none会脱离文档流,visibility为hidden虽然看不到,但类似与透明度为0,其实还在文档流中,还是有渲染的过程。
2.尽量避免使用表格布局,当我们不为表格td添加固定宽度时,一列的td的宽度会以最宽td的宽作为渲染标准,假设前几行td在渲染时都渲染好了,结果下面某行的一个td特别宽,table为了统一宽,前几行的td会回流重新计算宽度,这是个很耗时的事情。
#、减少回流
1.DOM的增删行为
比如你要删除某个节点,给某个父元素增加子元素,这类操作都会引起回流。如果要加多个子元素,最好使用documentfragment。
2.几何属性的变化
比如元素宽高变了,border变了,字体大小变了,这种直接会引起页面布局变化的操作也会引起回流。如果你要改变多个属性,最好将这些属性定义在一个class中,直接修改class名,这样只用引起一次回流。
3.元素位置的变化
修改一个元素的左右margin,padding之类的操作,所以在做元素位移的动画,不要更改margin之类的属性,使用定位脱离文档流后改变位置会更好。
4.获取元素的偏移量属性
例如获取一个元素的scrollTop、scrollLeft、scrollWidth、offsetTop、offsetLeft、offsetWidth、offsetHeight之类的属性,浏览器为了保证值的正确也会回流取得最新的值,所以如果你要多次操作,最取完做个缓存。
5.页面初次渲染
这样的回流无法避免
6.浏览器窗口尺寸改变
resize事件发生也会引起回流。
#、线程和进程
进程是cpu资源分配的最小单位(是能拥有资源和独立运行的最小单位)
线程是cpu调度的最小单位(线程是建立在进程的基础上的一次程序运行单位,一个进程中可以有多个线程)
#、浏览器 进程
-
GUI渲染线程
- 负责渲染浏览器界面,解析HTML,CSS,构建DOM树和RenderObject树,布局和绘制等。
- 当界面需要重绘(Repaint)或由于某种操作引发回流(reflow)时,该线程就会执行
- 注意,GUI渲染线程与JS引擎线程是互斥的,当JS引擎执行时GUI线程会被挂起(相当于被冻结了),GUI更新会被保存在一个队列中等到JS引擎空闲时立即被执行。
-
JS引擎线程
- 也称为JS内核,负责处理Javascript脚本程序。(例如V8引擎)
- JS引擎线程负责解析Javascript脚本,运行代码。
- JS引擎一直等待着任务队列中任务的到来,然后加以处理,一个Tab页(renderer进程)中无论什么时候都只有一个JS线程在运行JS程序
- 同样注意,GUI渲染线程与JS引擎线程是互斥的,所以如果JS执行的时间过长,这样就会造成页面的渲染不连贯,导致页面渲染加载阻塞。
-
事件触发线程
- 归属于浏览器而不是JS引擎,用来控制事件循环(可以理解,JS引擎自己都忙不过来,需要浏览器另开线程协助)
- 当JS引擎执行代码块如setTimeOut时(也可来自浏览器内核的其他线程,如鼠标点击、AJAX异步请求等),会将对应任务添加到事件线程中
- 当对应的事件符合触发条件被触发时,该线程会把事件添加到待处理队列的队尾,等待JS引擎的处理
-
注意,由于JS的单线程关系,所以这些待处理队列中的事件都得排队等待JS引擎处理(当JS引擎空闲时才会去执行)
-
定时触发器线程
- 传说中的
setInterval
与setTimeout
所在线程 - 浏览器定时计数器并不是由JavaScript引擎计数的,(因为JavaScript引擎是单线程的, 如果处于阻塞线程状态就会影响记计时的准确)
- 因此通过单独线程来计时并触发定时(计时完毕后,添加到事件队列中,等待JS引擎空闲后执行)
- 注意,W3C在HTML标准中规定,规定要求setTimeout中低于4ms的时间间隔算为4ms。
- 传说中的
-
异步http请求线程
- 在XMLHttpRequest在连接后是通过浏览器新开一个线程请求
- 将检测到状态变更时,如果设置有回调函数,异步线程就产生状态变更事件,将这个回调再放入事件队列中。再由JavaScript引擎执行。
#、load事件与DOMContentLoaded事件的先后
渲染完毕后会触发load
事件
很简单,知道它们的定义就可以了:
- 当 DOMContentLoaded 事件触发时,仅当DOM加载完成,不包括样式表,图片。
(譬如如果有async加载的脚本就不一定完成)
- 当 onload 事件触发时,页面上所有的DOM,样式表,脚本,图片都已经加载完成了。
(渲染完毕了)
所以,顺序是:DOMContentLoaded -> load
#、css加载是否会阻塞dom树渲染?
css是由单独的下载线程异步下载的。
css加载不会阻塞DOM树解析(异步加载时DOM照常构建)
但会阻塞render树渲染(渲染时需等css加载完毕,因为render树需要css信息)
#、普通图层和复合图层
浏览器渲染的图层一般包含两大类:普通图层
以及 复合图层
首先,普通文档流内可以理解为一个复合图层(这里称为默认复合层
,里面不管添加多少元素,其实都是在同一个复合图层中)
其次,absolute布局(fixed也一样),虽然可以脱离普通文档流,但它仍然属于默认复合层
。
然后,可以通过硬件加速
的方式,声明一个新的复合图层
,它会单独分配资源
(当然也会脱离普通文档流,这样一来,不管这个复合图层中怎么变化,也不会影响默认复合层
里的回流重绘)
将该元素变成一个复合图层,就是传说中的硬件加速技术
- 最常用的方式:
translate3d
、translateZ
opacity
属性/过渡动画(需要动画执行的过程中才会创建合成层,动画没有开始或结束后元素还会回到之前的状态)will-chang
属性(这个比较偏僻),一般配合opacity与translate使用(而且经测试,除了上述可以引发硬件加速的属性外,其它属性并不会变成复合层),
<video><iframe><canvas><webgl>
等元素
#、复合图层的作用
一般一个元素开启硬件加速后会变成复合图层,可以独立于普通文档流中,改动后可以避免整个页面重绘,提升性能
但是尽量不要大量使用复合图层,否则由于资源消耗过度,页面反而会变的更卡
使用硬件加速时,尽可能的使用index,防止浏览器默认给后续的元素创建复合层渲染
具体的原理时这样的:
**webkit CSS3中,如果这个元素添加了硬件加速,并且index层级比较低,
那么在这个元素的后面其它元素(层级比这个元素高的,或者相同的,并且releative或absolute属性相同的),
会默认变为复合层渲染,如果处理不当会极大的影响性能**
简单点理解,其实可以认为是一个隐式合成的概念:如果a是一个复合图层,而且b在a上面,那么b也会被隐式转为一个复合图层,这点需要特别注意
#、JS的运行机制
- JS分为同步任务和异步任务
- 同步任务都在主线程上执行,形成一个
执行栈
- 主线程之外,事件触发线程管理着一个
任务队列
,只要异步任务有了运行结果,就在任务队列
之中放置一个事件。 - 一旦
执行栈
中的所有同步任务执行完毕(此时JS引擎空闲),系统就会读取任务队列
,将可运行的异步任务添加到可执行栈中,开始执行。
所以:为什么有时候setTimeout推入的事件不能准时执行?因为可能在它推入到事件列表时,主线程还不空闲,正在执行其它代码,
所以自然有误差。
- 主线程运行时会产生执行栈,
栈中的代码调用某些api时,它们会在事件队列中添加各种事件(当满足触发条件后,如ajax请求完毕)
- 而栈中的代码执行完毕,就会读取事件队列中的事件,去执行那些回调
- 如此循环
- 注意,总是要等待栈中的代码执行完毕后才会去读取事件队列中的事件
#、定时器
是由定时器线程控制
因为JavaScript引擎是单线程的, 如果处于阻塞线程状态就会影响记计时的准确,因此很有必要单独开一个线程用来计时。
当使用setTimeout
或setInterval
时,它需要定时器线程计时,计时完成后就会将特定的事件推入事件队列中。
- 执行结果是:先
begin
后hello!
- 虽然代码的本意是0毫秒后就推入事件队列,但是W3C在HTML标准中规定,规定要求setTimeout中低于4ms的时间间隔算为4ms。
- 就算不等待4ms,就算假设0毫秒就推入事件队列,也会先执行
begin
(因为只有可执行栈内空了后才会主动读取事件队列)
#、setTimeout 优于 setInterval:
setInterval则是每次都精确的隔一段时间推入一个事件
(但是,事件的实际执行时间不一定就准确,还有可能是这个事件还没执行完毕,下一个事件就来了)
就会导致定时器代码连续运行好几次,而之间没有间隔。
就算正常间隔执行,多个setInterval的代码执行时间可能会比预期小(因为代码执行需要一定时间)
而且把浏览器最小化显示等操作时,setInterval并不是不执行程序,它会把setInterval的回调函数放在队列中,等浏览器窗口再次打开时,一瞬间全部执行
鉴于这么多但问题,一般认为的最佳方案是:用setTimeout模拟setInterval,或者特殊场合直接用requestAnimationFrame
#、requestAnimationFrame
window.requestAnimationFrame()
告诉浏览器——你希望执行一个动画,并且要求浏览器在下次重绘之前调用指定的回调函数更新动画。该方法需要传入一个回调函数作为参数,该回调函数会在浏览器下一次重绘之前执行
1、requestAnimationFrame 会把每一帧中的所有DOM操作集中起来,在一次重绘或回流中就完成,并且重绘或回流的时间间隔紧紧跟随浏览器的刷新频率,一般来说,这个频率为每秒60帧。
2、在隐藏或不可见的元素中,requestAnimationFrame将不会进行重绘或回流,这当然就意味着更少的的cpu,gpu和内存使用量。
停止:cancelAnimationFrame()接收一个参数 requestAnimationFrame默认返回一个id,cancelAnimationFrame只需要传入这个id就可以停止了。
#、定时器执行顺序,es6 会遇到有一些问题:
执行结果为:
因为Promise里有了一个一个新的概念:microtask
JS中分为两种任务类型:macrotask
和microtask
,在ECMAScript中,microtask称为jobs
,macrotask可称为task
#、macrotask
和 microtask
-
macrotask(又称之为宏任务),可以理解是每次执行栈执行的代码就是一个宏任务(包括每次从事件队列中获取一个事件回调并放到执行栈中执行)
- 每一个task会从头到尾将这个任务执行完毕,不会执行其它
- 浏览器为了能够使得JS内部task与DOM任务能够有序的执行,会在一个task执行结束后,在下一个 task 执行开始前,对页面进行重新渲染
-
microtask(又称为微任务),可以理解是在当前 task 执行结束后立即执行的任务
- 也就是说,在当前task任务后,下一个task之前,在渲染之前
- 所以它的响应速度相比setTimeout(setTimeout是task)会更快,因为无需等渲染
- 也就是说,在某一个macrotask执行完后,就会将在它执行期间产生的所有microtask都执行完毕(在渲染前)
形成 macrotask 和 microtask 的场景
- macrotask:主代码块,setTimeout,setInterval等(可以看到,事件队列中的每一个事件都是一个macrotask)
- microtask:Promise,process.nextTick等
线程:
- macrotask中的事件都是放在一个事件队列中的,而这个队列由事件触发线程维护
- microtask中的所有微任务都是添加到微任务队列(Job Queues)中,等待当前macrotask执行完毕后执行,而这个队列由JS引擎线程维护
注意,有一些浏览器执行结果不一样(因为它们可能把microtask当成macrotask来执行了),
#、 js 运行机制总结
- 执行一个宏任务(栈中没有就从事件队列中获取)
- 执行过程中如果遇到微任务,就将它添加到微任务的任务队列中
- 宏任务执行完毕后,立即执行当前微任务队列中的所有微任务(依次执行)
- 当前宏任务执行完毕,开始检查渲染,然后GUI线程接管渲染
- 渲染完毕后,JS线程继续接管,开始下一个宏任务(从事件队列中获取)
#、负载均衡
对于大型的项目,由于并发访问量很大,所以往往一台服务器是吃不消的,所以一般会有若干台服务器组成一个集群,然后配合反向代理实现负载均衡
简单的说:
用户发起的请求都指向调度服务器(反向代理服务器,譬如安装了nginx控制负载均衡),然后调度服务器根据实际的调度算法,分配不同的请求给对应集群中的服务器执行,然后调度器等待实际服务器的HTTP响应,并将它反馈给用户
#、数据到达后端后的处理
一般后台都是部署到容器中的,所以一般为:
- 先是容器接受到请求(如tomcat容器)
- 然后对应容器中的后台程序接收到请求(如java程序)
- 然后就是后台会有自己的统一处理,处理完后响应响应结果
概括下:
- 一般有的后端是有统一的验证的,如安全拦截,跨域验证
- 如果这一步不符合规则,就直接返回了相应的http报文(如拒绝请求等)
- 然后当验证通过后,才会进入实际的后台代码,此时是程序接收到请求,然后执行(譬如查询数据库,大量计算等等)
- 等程序执行完毕后,就会返回一个http响应包(一般这一步也会经过多层封装)
- 然后就是将这个包从后端发送到前端,完成交互
TLS 连接:https://www.jianshu.com/p/82efa80dc2f4
浏览器工作原理:https://www.html5rocks.com/zh/tutorials/internals/howbrowserswork/
浏览器工作原理:https://zhuanlan.zhihu.com/p/47407398
回流重绘:https://www.cnblogs.com/echolun/p/10105223.html
https://www.cnblogs.com/caiyy/p/10406934.html
js单线程:https://www.cnblogs.com/wuqiuxue/p/8342121.html
浏览器进程:https://segmentfault.com/a/1190000012925872#articleHeader20
WebKit浏览器内核源码解析:https://www.cnblogs.com/xinxihua/p/14352940.html
requestAnimationFrame:https://developer.mozilla.org/zh-CN/docs/Web/API/Window/requestAnimationFrame
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现
2017-03-23 前端面试的一道数组元素值去重问题
2017-03-23 分解质因数算法
2017-03-23 js 的 Math 对象
2017-03-23 简化求质数算法
2017-03-23 数值类型小数点后是否可以接零问题