python信用卡欺诈检测

信用卡欺诈检测

任务流程:
1、加载数据,观察问题
2、针对问题给出解决方案
3、数据集切分
4、评估方法对比
5、逻辑回归模型
6、建模结果分析
7、方案效果对比

读取数据

import pandas as pd 
import matplotlib.pyplot as plt
import numpy as np
%matplotlib  inline

data = pd.read_csv("E:\python学习\回归\信用卡欺诈检测\creditcard.csv")
data.head()

Time V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V21 V22 V23 V24 V25 V26 V27 V28 Amount Class
0 0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.363787 ... -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 149.62 0
1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 0.085102 -0.255425 ... -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 2.69 0
2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 ... 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 378.66 0
3 1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.387024 ... -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 123.50 0
4 2.0 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.817739 ... -0.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 69.99 0

5 rows × 31 columns


通过观察数据,发现第一列 time没有真实意义,其他V列的值比较匀称,但是Amount列值的波动比较大,我们希望的数据特征是数据波动比较稳定的。

##数据标签分布
count_classes = pd.value_counts(data['Class'],sort=True).sort_index()
print(count_classes)
 
# pandas画条形图
count_classes.plot(kind = 'bar')
plt.title("Fraud class histogram")
plt.xlabel("Class")
plt.ylabel("Frequency")

0    284315
1       492
Name: Class, dtype: int64

Text(0, 0.5, 'Frequency')


由于我们发现提供的数据集本身就很不规则,我们考虑对数据做进一步处理,主要2种思路:下采样和过采样。
# 引入sklearn 标准化处理模块
from sklearn.preprocessing import StandardScaler

data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1,1))
data = data.drop(['Time','Amount'],axis = 1)
data.head()
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 ... V21 V22 V23 V24 V25 V26 V27 V28 Class normAmount
0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 0.098698 0.363787 0.090794 ... -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 0 0.244964
1 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 0.085102 -0.255425 -0.166974 ... -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 0 -0.342475
2 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 0.207643 ... 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 0 1.160686
3 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.387024 -0.054952 ... -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 0 0.140534
4 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.817739 0.753074 ... -0.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 0 -0.073403

5 rows × 30 columns



第一种方式:采用下采样

X = data.iloc[:,data.columns != 'Class']
y = data.iloc[:,data.columns == 'Class']
number_records_fraud = len(data[data.Class==1])  ## class 为1  是异常值
fraud_indices = np.array(data[data.Class==1].index)  ## 异常值数据的索引
normal_indices = data[data.Class==0].index  ## 正常值数据的索引个数

# 对正常样本随即采用指定长度
random_normal_indices = np.random.choice(normal_indices,number_records_fraud,replace=False)
random_normal_indices = np.array(random_normal_indices)

# 合并新的索引项
under_sample_indices = np.concatenate([fraud_indices,random_normal_indices])
# 根据索引得到下采样的所有的样本点
under_sample_data = data.iloc[under_sample_indices,:]
X_undersample = under_sample_data.iloc[:,under_sample_data.columns!='Class']
y_undersample = under_sample_data.iloc[:,under_sample_data.columns=='Class']
#打印比例
print("正常样本比例:",len(under_sample_data[under_sample_data.Class==0])/len(under_sample_data))
print("异常样本比例:",len(under_sample_data[under_sample_data.Class==1])/len(under_sample_data))
print("下采样的总样本:",len(under_sample_data))

正常样本比例: 0.5
异常样本比例: 0.5
下采样的总样本: 984


数据集划分 这里我们需要注意的是,数据集划分成 训练集 和 测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=0)
print("原始训练集包含样本:",len(X_train))
print("原始测试集包含样本数量:",len(X_test))
print("原始样本总数:",len(X_train)+len(X_test))

# 对下采样的数据集进行划分
X_train_undersample,X_test_undersample,y_train_undersample,y_test_undersample = train_test_split(X_undersample,y_undersample,test_size=0.3,random_state=0)
print("下采样训练集包含样本:",len(X_train_undersample))
print("下采样测试集包含样本数量:",len(X_test_undersample))
print("下采样总数:",len(X_train_undersample)+len(X_test_undersample))

原始训练集包含样本: 199364
原始测试集包含样本数量: 85443
原始样本总数: 284807
下采样训练集包含样本: 688
下采样测试集包含样本数量: 296
下采样总数: 984

###  选择模型评估方法
准确率:分类问题中做对的占总体的百分比
召回率:正例中有多少能够预测,覆盖面的大小,比如我们看异常次数,那么假设总共异常值 10次,我们预测到是异常的是 6次, 那么召回率就是  0.6
精确度,被分为正例中实际为正例的比例
##  Recall = TP / (TP + FN)
from sklearn.model_selection import KFold,cross_val_score,cross_val_predict
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import recall_score,confusion_matrix


def printing_Kfold_scores(x_train_data,y_train_data):
    fold = KFold(n_splits=5,shuffle=False)
    
    c_param_range = [0.01,0.1,1,10,100] # 定义不同力度的正则化惩罚力度
    ## 展示结果用的表格
    result_table = pd.DataFrame(index = range(len(c_param_range),2),columns=['C_parameter','Mean recall score'])
    result_table['C_parameter'] = c_param_range
    
    # k - fold 表示 K折交叉验证,这会得到2个索引集, 训练集 indices[0]   验证集 indices[1]

    j = 0
    
    ## 循环遍历不同的惩罚力度
    for c_param in c_param_range:
        print('----------------------')
        print('正则化惩罚力度' , c_param)
        print('----------------------')
        print('')
        
        recall_accs = []
        
        ## 一步步分解来做交叉验证   把训练集数据 重新分成 新的训练集和验证集
        for iteration,indices in enumerate(fold.split(x_train_data),start=1):
            ## 指定算法模型,并给定参数
            Ir = LogisticRegression(C = c_param, penalty='l2')
            ## 训练模型,注意训练的时候,一定传入的训练集,所以 x 和 y 的索引都是  0 
            Ir.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel())
            ## 进行模型预测,这时候用的是 验证集 索引 为  1
            y_pred_undersample = Ir.predict(x_train_data.iloc[indices[1],:].values)
            ## 有了预测结果之后,就可以进行模型评估,这里 recall_score 需要传入 预测值和真实值
            recall_acc = recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample)
            recall_accs.append(recall_acc)
            print('Iteration',iteration,':召回率 = ',recall_accs[-1])
         
        ## 当执行完所有的交叉验证后,计算平均结果
        result_table.loc[j,'Mean recall score'] = np.mean(recall_accs)
        j += 1
        print()
        print("平均召回率:",np.mean(recall_accs))
        print()
        
    best_c = result_table.iloc[result_table['Mean recall score'].astype('float32').idxmax()]['C_parameter']            
    print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
    print('效果最好的模型选择的参数=',best_c)
    print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>")
    return best_c
   
## 交叉验证与不同参数的结果
best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)
 

    

----------------------
正则化惩罚力度 0.01
----------------------

Iteration 1 :召回率 =  0.821917808219178
Iteration 2 :召回率 =  0.8493150684931506
Iteration 3 :召回率 =  0.8983050847457628
Iteration 4 :召回率 =  0.9324324324324325
Iteration 5 :召回率 =  0.8787878787878788

平均召回率: 0.8761516545356806

----------------------
正则化惩罚力度 0.1
----------------------

Iteration 1 :召回率 =  0.863013698630137
Iteration 2 :召回率 =  0.863013698630137
Iteration 3 :召回率 =  0.9661016949152542
Iteration 4 :召回率 =  0.9459459459459459
Iteration 5 :召回率 =  0.8939393939393939

平均召回率: 0.9064028864121736

----------------------
正则化惩罚力度 1
----------------------

Iteration 1 :召回率 =  0.863013698630137
Iteration 2 :召回率 =  0.8767123287671232
Iteration 3 :召回率 =  0.9830508474576272
Iteration 4 :召回率 =  0.9324324324324325
Iteration 5 :召回率 =  0.9242424242424242

平均召回率: 0.9158903463059488

----------------------
正则化惩罚力度 10
----------------------

Iteration 1 :召回率 =  0.863013698630137
Iteration 2 :召回率 =  0.8767123287671232
Iteration 3 :召回率 =  0.9830508474576272
Iteration 4 :召回率 =  0.9459459459459459
Iteration 5 :召回率 =  0.9393939393939394

平均召回率: 0.9216233520389545

----------------------
正则化惩罚力度 100
----------------------

Iteration 1 :召回率 =  0.863013698630137
Iteration 2 :召回率 =  0.8767123287671232
Iteration 3 :召回率 =  0.9830508474576272
Iteration 4 :召回率 =  0.9459459459459459
Iteration 5 :召回率 =  0.9393939393939394

平均召回率: 0.9216233520389545

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
效果最好的模型选择的参数= 10.0
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

混淆矩阵

from sklearn.metrics import confusion_matrix
from itertools import product as product
def plot_confusion_matrix(cm,classes,title='Confusion matrix',cmap=plt.cm.Blues):
    plt.imshow(cm,interpolation='nearest',cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks,classes,rotation=0)
    plt.yticks(tick_marks,classes)
    
    thresh = cm.max() / 2.
    for i, j in product(range(cm.shape[0]),range(cm.shape[1])):
        plt.text(j,i,cm[i,j],
                horizontalalignment="center",
                color="white" if cm[i,j] > thresh else "black")
        
    plt.tight_layout()
    plt.ylabel("True label")
    plt.xlabel("Predicted label")

下采样模型 应用于下采样数据

Ir = LogisticRegression(C=best_c,penalty='l2')
Ir.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample = Ir.predict(X_test_undersample.values)

cnf_matrix = confusion_matrix(y_test_undersample,y_pred_undersample)
np.set_printoptions(precision=2)
print("模型应用于下采样的召回率:",cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix,
                     classes=class_names,
                     title='Confusion matrix')
plt.show()

模型应用于下采样的召回率: 0.9183673469387755

下采样模型应用于原始数据

Ir = LogisticRegression(C=best_c,penalty='l2')
Ir.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred = Ir.predict(X_test.values)

cnf_matrix = confusion_matrix(y_test,y_pred)
np.set_printoptions(precision=2)
print("下采样模型应用于原始数据的召回率:",cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix,
                     classes=class_names,
                     title='Confusion matrix')
plt.show()

下采样模型应用于原始数据的召回率: 0.9319727891156463

不同阈值影响

Ir = LogisticRegression(C=best_c,penalty='l2')
Ir.fit(X_train_undersample,y_train_undersample.values.ravel())
y_pred_undersample_proba = Ir.predict_proba(X_test_undersample.values)
thresholds = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
plt.figure(figsize=(10,10))
j = 1
for i in thresholds:
    y_test_predictions_high_recall = y_pred_undersample_proba[:,1] > i
    plt.subplot(3,3,j)
    j+=1
    cnf_matrix = confusion_matrix(y_test_undersample,y_test_predictions_high_recall)      
    np.set_printoptions(precision=2)
    print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
    class_names = [0,1]
    plot_confusion_matrix(cnf_matrix,
                         classes=class_names,
                         title="Threshold >= %s"%i)

Recall metric in the testing dataset:  0.9659863945578231
Recall metric in the testing dataset:  0.9387755102040817
Recall metric in the testing dataset:  0.9319727891156463
Recall metric in the testing dataset:  0.9251700680272109
Recall metric in the testing dataset:  0.9183673469387755
Recall metric in the testing dataset:  0.9183673469387755
Recall metric in the testing dataset:  0.8775510204081632
Recall metric in the testing dataset:  0.8639455782312925
Recall metric in the testing dataset:  0.8571428571428571

第二种方式 过采样方案

# 过采样, 使用 smote算法生成样本
# 引入逻辑回归模型
# 加载数据
data = pd.read_csv("E:\python学习\回归\信用卡欺诈检测\creditcard.csv")
 
# Amount特征值太大,进行正规化
data['normAmount'] = StandardScaler().fit_transform(data['Amount'].values.reshape(-1, 1))
# 删除无用的Time列和原 Amount列
data = data.drop(['Time', 'Amount'], axis=1)
 
# 获取特征列,所有行,列名不是Class的列
features = data.loc[:, data.columns != 'Class']
 
# 获取标签列,所有行,列名是Class的列
labels = data.loc[:, data.columns == 'Class']
 
# 分离训练集和测试集
features_train, features_test, labels_train, labels_test = train_test_split(features, labels, test_size=0.2, random_state=0)



from imblearn.over_sampling import SMOTE
oversampler = SMOTE(random_state=0)
os_features,os_labels=oversampler.fit_resample(features_train,labels_train)
os_features = pd.DataFrame(os_features)
os_labels = pd.DataFrame(os_labels)
best_c = printing_Kfold_scores(os_features,os_labels)
----------------------
正则化惩罚力度 0.01
----------------------


Iteration 1 :召回率 =  0.9161290322580645
Iteration 2 :召回率 =  0.9144736842105263
Iteration 3 :召回率 =  0.9105676662609273
Iteration 4 :召回率 =  0.8931754981809389
Iteration 5 :召回率 =  0.893626141721898

平均召回率: 0.905594404526471

----------------------
正则化惩罚力度 0.1
----------------------


Iteration 1 :召回率 =  0.9161290322580645
Iteration 2 :召回率 =  0.9144736842105263
Iteration 3 :召回率 =  0.9115857032200951
Iteration 4 :召回率 =  0.8943295852980293
Iteration 5 :召回率 =  0.895120959321177

平均召回率: 0.9063277928615785

----------------------
正则化惩罚力度 1
----------------------


Iteration 1 :召回率 =  0.9161290322580645
Iteration 2 :召回率 =  0.9144736842105263
Iteration 3 :召回率 =  0.911807015602523
Iteration 4 :召回率 =  0.8945384201096932
Iteration 5 :召回率 =  0.8952528549917016

平均召回率: 0.9064402014345017

----------------------
正则化惩罚力度 10
----------------------


Iteration 1 :召回率 =  0.9161290322580645   
Iteration 2 :召回率 =  0.9144736842105263    
Iteration 3 :召回率 =  0.9118734093172512    
Iteration 4 :召回率 =  0.8945713940273244
Iteration 5 :召回率 =  0.8952528549917016

平均召回率: 0.9064600749609737

----------------------
正则化惩罚力度 100
----------------------


Iteration 1 :召回率 =  0.9161290322580645    
Iteration 2 :召回率 =  0.9144736842105263   
Iteration 3 :召回率 =  0.9118734093172512   
Iteration 4 :召回率 =  0.8945713940273244
Iteration 5 :召回率 =  0.8952638462975786

平均召回率: 0.906462273222149

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
效果最好的模型选择的参数= 100.0
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

#### 过采样模型  应用于  过采样数据
Ir = LogisticRegression(C=best_c,penalty='l2')
Ir.fit(os_features,os_labels.values.ravel())
y_pred = Ir.predict(features_test.values)
cnf_matrix = confusion_matrix(labels_test,y_pred)
np.set_printoptions(precision=2)

print("过采样混淆矩阵:",cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))

class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix,
                     classes=class_names,
                     title="confusion matrix")
plt.show()

过采样混淆矩阵: 0.9405940594059405


####  过采样模型  应用于  真实数据
Ir = LogisticRegression(C=best_c,penalty='l2')
Ir.fit(os_features,os_labels.values.ravel())
y_pred = Ir.predict(X_test.values)

cnf_matrix = confusion_matrix(y_test,y_pred)
np.set_printoptions(precision=2)
print("过采样模型应用于原始数据的召回率:",cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))
class_names = [0,1]
plt.figure()
plot_confusion_matrix(cnf_matrix,
                     classes=class_names,
                     title='Confusion matrix')
plt.show()
过采样模型应用于原始数据的召回率: 0.9183673469387755


posted @ 2024-02-03 09:46  AIIsFuture  阅读(145)  评论(0编辑  收藏  举报