程序员必知的8大经典内部排序---java版

package paixu;

public class paixu {

    public static void main(String[] args) {
        sort qs = new sort();
        int i[] = { 49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51 };
        qs.quiteSort(i, 0, i.length - 1);
//      qs.bubblesort(i);
//      int[] spans = {5,3,1};
//      qs.shellSort(i, spans);
//      qs.insertSort(i);
//      qs.selectSort(i);
//      qs.heapSort(i);
//      qs.mergeSort(i, 0, i.length - 1);
//      qs.radixSort(i, 10);
        for (int data : i) {
            System.out.print(data + " ");
        }
    }
}
/* 程序员必知的8大内部排序
 * 插入排序:直接插入&希尔
 * 选择排序:直接选择&堆
 * 交换排序:冒泡&快速
 * 归并排序
 * 基数排序
 */
class sort {
    /* 快速排序
     * 选出基准项,
     * 将小的放前面,大的放后面,
     * 然后分别对前面和后面进行嵌套执行*/
    public void quiteSort(int data[], int low, int hight) {
        if (low < hight) {
            int pivotpos = partition(data, low, hight);
            quiteSort(data, low, pivotpos - 1);
            quiteSort(data, pivotpos + 1, hight);
        }
    }
    private int partition(int[] data, int low, int high) {// 选定枢轴为low所对应的值
        int pivot = data[low];
        while (low < high) {
            while (low < high && pivot <= data[high]) {// 高位找到比povite大,则符合要求,继续寻找
                high--;
            }
            data[low] = data[high];
            while (low < high && data[low] <= pivot) { // 低位开始找到比povite小,符合要求,继续寻找
                low++;
            }
            data[high] = data[low];
        }
        data[low] = pivot;
        return low;
    }
    
    /* 冒泡排序
     * 扫描数据,寻找相邻乱序的项,
     * 交换项的位置然后继续扫描。
     * 乱序少,快;乱序多,慢*/
    public void bubblesort(int[] data) {
        for (int i = 1; i < data.length; i++) {
            boolean exchange = false;
            for (int j = 0; j < data.length - i; j++) {
                if (data[j] > data[j + 1]) { // 交换
                    int temp = data[j];
                    data[j] = data[j + 1];
                    data[j + 1] = temp;
                    exchange = true;
                }
            }
            if (!exchange)
                break;
        }
    }
    
    /* 希尔排序
     * 分组插入排序,
     * 增量序列一般为:5,3,1,
     * 取增量原则:最后必须是1,避免互为倍数*/
    public void shellSort(int[] data, int[] spans) {
        for (int i = 0; i < spans.length; i++) { // 增量序列循环
            int span = spans[i];
            for (int j = 0; j < span; j++) {// 组间循环
                for (int k = j + span; k < data.length; k = k + span) { // 组内循环
                    int temp = data[k];
                    int pre = k - span;
                    while (pre >= 0 && data[pre] > temp) {
                        data[pre + span] = data[pre];
                        pre = pre - span;
                    }// end while
                    data[pre + span] = temp;
                }// end for
            }
        }// end for
    }// end shellSort

    /* 直接插入排序
     * 从第二个数开始,
     * 一个一个地插入到合适的位置*/
    public void insertSort(int[] data) {
        for (int i = 1; i < data.length; i++) {
            int tmp = data[i];
            if (tmp < data[i - 1]) {
                int j = i - 1;
                for (; j >= 0 && data[j] > tmp; j--) {
                    data[j + 1] = data[j];
                }
                data[j + 1] = tmp;
            }
        }
    }

    /* 直接选择排序
     * 从当前无序区中选出最小的数据元素,
     * 将它与无序区的第一个元素互换*/
    public void selectSort(int[] data) {// 直接选择排序的方法
        for (int i = 0; i < data.length; i++) {
            int k = i;
            for (int j = i + 1; j < data.length; j++) {
                if (data[k] > (data[j])) {
                    k = j; // 最小的数据元素
                }
            }
            if (k != i) {
                int temp = data[i];
                data[i] = data[k];
                data[k] = temp;
            }
        }
    }

    /* 堆排序
     * 将数组调准为大根堆,
     * 堆顶与最后项交换,
     * 无序区重新调整为堆,
     * 交换堆顶,
     * 重复步骤*/
    public void heapSort(int[] data) {
        buildHeap(data);
        for (int i = data.length - 1; i > 0; i--) {
            int temp = data[0];
            data[0] = data[i];
            data[i] = temp;
            heapify(data, 0, i - 1);
        }
    }
    private void buildHeap(int[] data) {
        for (int i = data.length / 2; i >= 0; i--) {
            heapify(data, i, data.length - 1);
        }
    }
    private void heapify(int[] data, int low, int high) {
        int temp = data[low];
        for (int large = 2 * low + 1; large <= high; large *= 2) {
            if (large < high && data[large] < data[large + 1]) {
                large++;
            }
            if (temp >= data[large]) {
                break;
            }
            data[low] = data[large];
            low = large;
        }
        data[low] = temp;
    }

    /* 归并排序
     * 递归分解成单元素的有序子序列,
     * 然后再把有序子序列合并为整体有序序列*/
    public void mergeSort(int[] data, int left, int right) {
        if (left < right) {
            int center = (left + right) / 2; // 找出中间索引
            mergeSort(data, left, center); // 对左边数组进行递归
            mergeSort(data, center + 1, right); // 对右边数组进行递归
            merge(data, left, center, right); // 合并
        }
    }
    private void merge(int[] data, int left, int center, int right) {
        int[] tmpArr = new int[data.length];
        int mid = center + 1;
        int index = left; // index记录中间数组的索引
        int tmp = left;
        while (left <= center && mid <= right) { // 从两个数组中取出最小的放入中间数组
            tmpArr[index++] = (data[left] <= data[mid]) ? data[left++] : data[mid++];
        }
        while (mid <= right) { // 剩余部分依次放入中间数组
            tmpArr[index++] = data[mid++];
        }
        while (left <= center) {
            tmpArr[index++] = data[left++];
        }
        while (tmp <= right) {
            data[tmp] = tmpArr[tmp++];
        }
    }

    /* 基数排序
     * 按最低位排序开始一直到按最高位排序,
     * 依次对各项进行排序,
     * 最终得到有序序列*/
    public void radixSort(int[] data, int d) {//d=10^(n-1),n为最大数值的位数
        int k = 0;
        int n = 1;

        int[][] temp = new int[data.length][data.length];
        int[] order = new int[data.length];

        while (n <= d) {
            for (int i = 0; i < data.length; i++) {
                int lsd = ((data[i] / n) % 10);
                temp[lsd][order[lsd]] = data[i];
                order[lsd]++;
            }

            for (int i = 0; i < data.length; i++) {
                if (order[i] != 0) {
                    for (int j = 0; j < order[i]; j++) {
                        data[k] = temp[i][j];
                        k++;
                    }
                    order[i] = 0;        //归零
                }
            }
            n *= 10;    //位数增加    
            k = 0;        //归零
        }
    }
}

 

posted on 2012-07-13 20:01  guodefu909  阅读(346)  评论(0编辑  收藏  举报

导航