HashMap的底层原理及扩容过程

HashMap的扩容过程(jdk1.8版本)

HashMap的常见参数

initialCapacity    默认初始容量   值为16,最大容量值为2^30
loadFactor         默认加载因子   值为0.75f
threshold          阈值           默认值为16 *0.75 ,即容量*加载因子

这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,

加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,加载因子越大表示散列表的装填程度越高,反之愈小。

如果加载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果加载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下无需修改。

在jdk1.7中,hashmap的底层创建的是Entry[]数组,在实例化后,底层就创建了一个长度为16的Entry[]数组,此时的底层结构是数组+链表;在jdk1.8中,底层创建的是Node[]数组,底层在一开始并不会创建数组,在第一次调用put方法时,底层才会创建一个长度为16的Node[]数组,此时的底层结构是数组+链表+红黑树。

何时进行扩容?

HashMap使用的是懒加载,构造完HashMap对象后,只要不进行put 方法插入元素,HashMap并不会去初始化或者扩容table。

当首次调用put方法时,HashMap会发现table为空然后调用resize方法进行初始化。

put方法源码如下

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

当添加完元素后,如果HashMap发现size(元素总数)大于threshold(阈值),则会调用resize方法进行扩容,然后把扩容后的数组放到新的数组中去。

若threshold(阈值)不为空,table的首次初始化大小为阈值,否则初始化为缺省值大小16。

当table需要扩容时,扩容后的table大小变为原来的两倍,接下来就是进行扩容后table的调整:

假设扩容前的table大小为2的N次方,有put方法可知,元素的table索引为其hash值的后N位确定

那么扩容后的table大小即为2的N+1次方,则其中元素的table索引为其hash值的后N+1位确定,比原来多了一位

因此,table中的元素只有两种情况:

  1. 元素hash值第N+1位为0:不需要进行位置调整
  2. 元素hash值第N+1位为1:调整至原索引的两倍位置

在resize方法中,第45行的判断即用于确定元素hashi值第N+1位是否为0:

  • 若为0,则使用loHead与loTail,将元素移至新table的原索引处
  • 若不为0,则使用hiHead与hiHead,将元素移至新table的两倍索引处

扩容或初始化完成后,resize方法返回新的table。

hashmap的resize方法源码

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
posted @ 2019-10-29 20:26  难得糊涂1998  阅读(1336)  评论(0编辑  收藏  举报