ROC曲线
ROC曲线指受试者工作特征曲线 / 接收器操作特性曲线(receiver operating characteristic curve), 是反映敏感性和特异性连续变量的综合指标,是用构图法揭示敏感性和特异性的相互关系,它通过将连续变量设定出多个不同的临界值,从而计算出一系列敏感性和特异性,再以敏感性为纵坐标、(1-特异性)为横坐标绘制成曲线,曲线下面积越大,诊断准确性越高。在ROC曲线上,最靠近坐标图左上方的点为敏感性和特异性均较高的临界值。
ROC曲线的例子
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。
TP:正确肯定的数目;
FN:漏报,没有正确找到的匹配的数目;
FP:误报,给出的匹配是不正确的;
TN:正确拒绝的非匹配对数;
列联表如下表所示,1代表正类,0代表负类。
预测 | ||||
1 | 0 | 合计 | ||
实际 | 1 | True Positive(TP) | False Negative(FN) | Actual Positive(TP+FN) |
0 | False Positive(FP) | True Negative(TN) | Actual Negative(FP+TN) | |
合计 | Predicted Positive(TP+FP) | Predicted Negative(FN+TN) | TP+FP+FN+TN |
从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。另外一个是负正类率(false positive rate, FPR),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=TN/ (FP+ TN) = 1-FPR。
其中,两列True matches和True non-match分别代表应该匹配上和不应该匹配上的
两行Pred matches和Pred non-match分别代表预测匹配上和预测不匹配上的
PPR应该是TPR
预测
|
||||
1
|
0
|
合计
|
||
实际
|
1
|
True Positive(TP)
|
False Negative(FN)
|
Actual Positive(TP+FN)
|
0
|
False Positive(FP)
|
True Negative(TN)
|
Actual Negative(FP+TN)
|
|
合计
|
Predicted Positive(TP+FP)
|
Predicted Negative(FN+TN)
|
TP+FP+FN+TN
|
在一个二分类模型中,对于所得到的连续结果,假设已确定一个阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例 的比类,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC,ROC曲线可以用于评价一个分类器。
ROC曲线和它相关的比率
(a)理想情况下,TPR应该接近1,FPR应该接近0。
ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。
比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)
(b)P和N得分不作为特征间距离d的一个函数,随着阈值theta增加,TP和FP都增加
Receiver Operating Characteristic,翻译为"接受者操作特性曲线",够拗口的。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即负正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益(benefits)。
此外,ROC曲线还可以用来计算“均值平均精度”(mean average precision),这是当你通过改变阈值来选择最好的结果时所得到的平均精度(PPV).
下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数 相同的部分。
Percentile | 实例数 | 正例数 | 1-特异度(%) | 敏感度(%) |
10 | 6180 | 4879 | 2.73 | 34.64 |
20 | 6180 | 2804 | 9.80 | 54.55 |
30 | 6180 | 2165 | 18.22 | 69.92 |
40 | 6180 | 1506 | 28.01 | 80.62 |
50 | 6180 | 987 | 38.90 | 87.62 |
60 | 6180 | 529 | 50.74 | 91.38 |
70 | 6180 | 365 | 62.93 | 93.97 |
80 | 6180 | 294 | 75.26 | 96.06 |
90 | 6180 | 297 | 87.59 | 98.17 |
100 | 6177 | 258 | 100.00 | 100.00 |
其正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。