pytorch学习笔记
pytorch笔记(一)——— 之GuitarYang的第一篇博客
一、准备数据
构建图片数据的两种方法:
第一种是使用 torchvision中的datasets.ImageFolder来读取图片然后用 DataLoader来并行加载。
第二种是通过继承 torch.utils.data.Dataset 实现用户自定义读取逻辑然后用 DataLoader来并行加载。
其中第二种方法是读取用户自定义数据集的通用方法,既可以读取图片数据集,也可以读取文本数据集。
第一种方法如下:
import torch
from torch import nn
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms,datasets
```
```python
transform_train = transforms.Compose(
[transforms.ToTensor()])
transform_valid = transforms.Compose(
[transforms.ToTensor()])
二、定义模型
使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器进行封装。
此处选择使用最简单的nn.Sequential,按层顺序模型。
#1.
def create_net():
net = nn.Sequential()
net.add_module("linear1",nn.Linear(15,20))
net.add_module("relu1",nn.ReLU())
net.add_module("linear2",nn.Linear(20,15))
net.add_module("relu2",nn.ReLU())
net.add_module("linear3",nn.Linear(15,1))
net.add_module("sigmoid",nn.Sigmoid())
return net
net = create_net()
print(net)
#2.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2)
self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
self.dropout = nn.Dropout2d(p = 0.1)
self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64,32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32,1)
self.sigmoid = nn.Sigmoid()
def forward(self,x):
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.pool(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
y = self.sigmoid(x)
return y
net = Net()
print(net)
#3.
torch.random.seed()
import torch
from torch import nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#设置padding_idx参数后将在训练过程中将填充的token始终赋值为0向量
self.embedding = nn.Embedding(num_embeddings = MAX_WORDS,embedding_dim = 3,padding_idx = 1)
self.conv = nn.Sequential()
self.conv.add_module("conv_1",nn.Conv1d(in_channels = 3,out_channels = 16,kernel_size = 5))
self.conv.add_module("pool_1",nn.MaxPool1d(kernel_size = 2))
self.conv.add_module("relu_1",nn.ReLU())
self.conv.add_module("conv_2",nn.Conv1d(in_channels = 16,out_channels = 128,kernel_size = 2))
self.conv.add_module("pool_2",nn.MaxPool1d(kernel_size = 2))
self.conv.add_module("relu_2",nn.ReLU())
self.dense = nn.Sequential()
self.dense.add_module("flatten",nn.Flatten())
self.dense.add_module("linear",nn.Linear(6144,1))
self.dense.add_module("sigmoid",nn.Sigmoid())
def forward(self,x):
x = self.embedding(x).transpose(1,2)
x = self.conv(x)
y = self.dense(x)
return y
net = Net()
print(net)
三.训练模型
Pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。
有3类典型的训练循环代码风格:脚本形式训练循环,函数形式训练循环,类形式训练循环。
1.脚本形式:
# 1,训练循环-------------------------------------------------
net.train()
loss_sum = 0.0
metric_sum = 0.0
step = 1
for step, (features,labels) in enumerate(dl_train, 1):
# 梯度清零
optimizer.zero_grad()
# 正向传播求损失
predictions = net(features)
loss = loss_func(predictions,labels)
metric = metric_func(predictions,labels)
# 反向传播求梯度
loss.backward()
optimizer.step()
# 打印batch级别日志
loss_sum += loss.item()
metric_sum += metric.item()
if step%log_step_freq == 0:
print(("[step = %d] loss: %.3f, "+metric_name+": %.3f") %
(step, loss_sum/step, metric_sum/step))
2、函数形式训练循环:
def train_step(model,features,labels):
# 训练模式,dropout层发生作用
model.train()
# 梯度清零
model.optimizer.zero_grad()
# 正向传播求损失
predictions = model(features)
loss = model.loss_func(predictions,labels)
metric = model.metric_func(predictions,labels)
# 反向传播求梯度
loss.backward()
model.optimizer.step()
return loss.item(),metric.item()
def valid_step(model,features,labels):
# 预测模式,dropout层不发生作用
model.eval()
# 关闭梯度计算
with torch.no_grad():
predictions = model(features)
loss = model.loss_func(predictions,labels)
metric = model.metric_func(predictions,labels)
return loss.item(), metric.item()
3.类形式的训练循环
import pytorch_lightning as pl
from torchkeras import LightModel
class Model(LightModel):
#loss,and optional metrics
def shared_step(self,batch)->dict:
x, y = batch
prediction = self(x)
loss = nn.BCELoss()(prediction,y)
preds = torch.where(prediction>0.5,torch.ones_like(prediction),torch.zeros_like(prediction))
acc = pl.metrics.functional.accuracy(preds, y)
dic = {"loss":loss,"accuracy":acc}
return dic
#optimizer,and optional lr_scheduler
def configure_optimizers(self):
optimizer= torch.optim.Adagrad(self.parameters(),lr = 0.02)
return optimizer
四、评估模型
此处省略
五、使用模型
此处省略
六、保存模型
model = models.vgg16(pretrained=True)
torch.save(model.state_dict(), 'model_weights.pth')
以上就是我的第一篇博客,入园三年第一次写博客,还望和大佬多多学习!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律