Sequence Classification

Natural Language Processing with Python

Charpter 6.1

复制代码
 1 import nltk
 2 from nltk.corpus import brown
 3 
 4 def pos_features(sentence,i,history):
 5     features = {"suffix(1)":sentence[i][-1:],
 6                 "suffix(2)":sentence[i][-2:],
 7                 "suffix(3)":sentence[i][-3:]}
 8     if i == 0:
 9         features["prev-word"]="<STAR>"
10         features["prev_tag"] ="<STAR>"
11     else:
12         features["prev_word"]=sentence[i-1]
13         features["prev_tag"]=history[i-1]        
14     return features
15     
16 class ConsecutivePosTagger(nltk.TaggerI):
17     def __init__(self,train_sents):
18         train_set=[]
19         for tagged_sent in train_sents:
20             history=[]
21             untagged_sent = nltk.tag.untag(tagged_sent)
22             for i,(word,tag) in enumerate(tagged_sent):
23                 featureset=pos_features(untagged_sent,i,history)
24                 train_set.append((featureset,tag))
25                 history.append(tag)
26         self.classifier=nltk.NaiveBayesClassifier.train(train_set)
27         
28     def tag(self,sentence):
29         history=[]
30         for i,word in enumerate(sentence):
31             featureset=pos_features(sentence,i,history)
32             tag=self.classifier.classify(featureset)
33             history.append(tag)
34         return zip(sentence,history)
35                 
36 def test_ConsecutivePosTagger():
37     tagged_sents=brown.tagged_sents(categories='news')
38     size = int(len(tagged_sents) * 0.1)
39     train_sents, test_sents = tagged_sents[size:], tagged_sents[:size]
40     tagger = ConsecutivePosTagger(train_sents)
41     
42     print tagger.evaluate(test_sents)
复制代码

流程为:

 

结果为:

0.796940194715

posted on   karis  阅读(548)  评论(0编辑  收藏  举报

努力加载评论中...

导航

点击右上角即可分享
微信分享提示