算法学习总结(三):插入排序

一、算法分析

  通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

二、算法描述

  一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  1、从第一个元素开始,该元素可以认为已经被排序

       2、取出下一个元素,在已经排序的元素序列中从后向前扫描

       3、如果该元素(已排序)大于新元素,将该元素移到下一位置

       4、重复步骤3,直到找到已排序的元素小于或者等于新元素的位置

       5、将新元素插入到该位置后

       6、重复步骤2~5

  如果目标是把n个元素的序列升序排列,那么采用插入排序存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1)次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2次。插入排序的赋值操作是比较操作的次数减去(n-1)次。平均来说插入排序算法复杂度为O(n^2)。因而,插入排序不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序还是一个不错的选择。 插入排序在工业级库中也有着广泛的应用,在STL的sort算法和stdlib的qsort算法中,都将插入排序作为快速排序的补充,用于少量元素的排序(通常为8个或以下)。

最差时间复杂度 O(n^2)
最优时间复杂度 O(n)
平均时间复杂度 O(n^2)
最差空间复杂度 总共O(n),需要辅助空间O(1)

三、算法图解

四、示例代码

public class InsertionSort {
    public int[] insertionSort(int[] A, int n) {
        int i, j, temp;
        for(i = 1; i < n; i++){
            temp = A[i];
            for(j = i; j > 0 && A[j - 1] > temp; j-- ){
                A[j] = A[j - 1];
            }
            A[j] = temp;
        }
        return A;
    }
}

 

posted @ 2016-07-22 15:52  gugibv  阅读(232)  评论(0编辑  收藏  举报