算法学习总结(一):冒泡排序
一、算法简介
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
二、算法描述
1、比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2、对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3、针对所有的元素重复以上的步骤,除了最后一个。
4、持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
冒泡排序是与插入排序拥有相等的执行时间,但是两种法在需要的交换次数却很大地不同。在最坏的情况,冒泡排序需要O(n^2)次交换,而插入排序只要最多O(n)交换。冒泡排序的实现(类似下面)通常会对已经排序好的数列拙劣地执行(O(n^2)),而插入排序在这个例子只需要O(n)个运算。因此很多现代的算法教科书避免使用冒泡排序,而用插入排序取代之。冒泡排序如果能在内部循环第一次执行时,使用一个旗标来表示有无需要交换的可能,也有可能把最好的复杂度降低到O(n)。在这个情况,在已经排序好的数列就无交换的需要。若在每次走访数列时,把走访顺序和比较大小反过来,也可以稍微地改进效率。有时候称为往返排序,因为算法会从数列的一端到另一端之间穿梭往返。
最差时间复杂度 | O(n^2) |
最优时间复杂度 | O(n) |
平均时间复杂度 | O(n^2) |
最差空间复杂度 | 总共O(n),需要辅助空间O(1) |
三、算法图解
四、示例代码
public class BubbleSort { public int[] bubbleSort(int[] A, int n) { int temp = 0; for(int i = 0;i < n-1;i++){ for(int j = 0;j<n-i-1;j++){ if(A [j] > A [j+1]){ temp = A[j]; A[j] = A[j+1]; A[j+1] = temp; } } } return A; } }
-