Netty源码分析之NioEventLoop(转)

原文:http://www.jianshu.com/p/9acf36f7e025

上一章节中,我们分析了Netty服务的启动过程,本章节分析Netty的NioEventLoop是如工作的。

NioEventLoop中维护了一个线程,线程启动时会调用NioEventLoop的run方法,执行I/O任务和非I/O任务:

I/O任务
即selectionKey中ready的事件,如accept、connect、read、write等,由processSelectedKeys方法触发。

非IO任务
添加到taskQueue中的任务,如register0、bind0等任务,由runAllTasks方法触发。

两种任务的执行时间比由变量ioRatio控制,默认为50,则表示允许非IO任务执行的时间与IO任务的执行时间相等。

NioEventLoop.run 方法实现

protected void run() {
    for (;;) {
        boolean oldWakenUp = wakenUp.getAndSet(false);
        try {
            if (hasTasks()) {
                selectNow();
            } else {
                select(oldWakenUp);
                if (wakenUp.get()) {
                    selector.wakeup();
                }
            }

            cancelledKeys = 0;
            needsToSelectAgain = false;
            final int ioRatio = this.ioRatio;
            if (ioRatio == 100) {
                processSelectedKeys();
                runAllTasks();
            } else {
                final long ioStartTime = System.nanoTime();

                processSelectedKeys();

                final long ioTime = System.nanoTime() - ioStartTime;
                runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
            }

            if (isShuttingDown()) {
                closeAll();
                if (confirmShutdown()) {
                    break;
                }
            }
        } catch (Throwable t) {
            logger.warn("Unexpected exception in the selector loop.", t);

            // Prevent possible consecutive immediate failures that lead to
            // excessive CPU consumption.
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                // Ignore.
            }
        }
    }
}

hasTasks()方法判断当前taskQueue是否有元素。
1、 如果taskQueue中有元素,执行 selectNow() 方法,最终执行selector.selectNow(),该方法会立即返回。

void selectNow() throws IOException {
    try {
        selector.selectNow();
    } finally {
        // restore wakup state if needed
        if (wakenUp.get()) {
            selector.wakeup();
        }
    }
}

2、 如果taskQueue没有元素,执行 select(oldWakenUp) 方法,代码如下:

private void select(boolean oldWakenUp) throws IOException {
    Selector selector = this.selector;
    try {
        int selectCnt = 0;
        long currentTimeNanos = System.nanoTime();
        long selectDeadLineNanos = currentTimeNanos + delayNanos(currentTimeNanos);
        for (;;) {
            long timeoutMillis = (selectDeadLineNanos - currentTimeNanos + 500000L) / 1000000L;
            if (timeoutMillis <= 0) {
                if (selectCnt == 0) {
                    selector.selectNow();
                    selectCnt = 1;
                }
                break;
            }

            int selectedKeys = selector.select(timeoutMillis);
            selectCnt ++;

            if (selectedKeys != 0 || oldWakenUp || wakenUp.get() || hasTasks() || hasScheduledTasks()) {
                // - Selected something,
                // - waken up by user, or
                // - the task queue has a pending task.
                // - a scheduled task is ready for processing
                break;
            }
            if (Thread.interrupted()) {
                // Thread was interrupted so reset selected keys and break so we not run into a busy loop.
                // As this is most likely a bug in the handler of the user or it's client library we will
                // also log it.
                //
                // See https://github.com/netty/netty/issues/2426
                if (logger.isDebugEnabled()) {
                    logger.debug("Selector.select() returned prematurely because " +
                            "Thread.currentThread().interrupt() was called. Use " +
                            "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
                }
                selectCnt = 1;
                break;
            }

            long time = System.nanoTime();
            if (time - TimeUnit.MILLISECONDS.toNanos(timeoutMillis) >= currentTimeNanos) {
                // timeoutMillis elapsed without anything selected.
                selectCnt = 1;
            } else if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
                    selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
                // The selector returned prematurely many times in a row.
                // Rebuild the selector to work around the problem.
                logger.warn(
                        "Selector.select() returned prematurely {} times in a row; rebuilding selector.",
                        selectCnt);

                rebuildSelector();
                selector = this.selector;

                // Select again to populate selectedKeys.
                selector.selectNow();
                selectCnt = 1;
                break;
            }

            currentTimeNanos = time;
        }

        if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS) {
            if (logger.isDebugEnabled()) {
                logger.debug("Selector.select() returned prematurely {} times in a row.", selectCnt - 1);
            }
        }
    } catch (CancelledKeyException e) {
        if (logger.isDebugEnabled()) {
            logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector - JDK bug?", e);
        }
        // Harmless exception - log anyway
    }
}

这个方法解决了Nio中臭名昭著的bug:selector的select方法导致cpu100%。
1、delayNanos(currentTimeNanos):计算延迟任务队列中第一个任务的到期执行时间(即最晚还能延迟多长时间执行),默认返回1s。每个SingleThreadEventExecutor都持有一个延迟执行任务的优先队列PriorityQueue,启动线程时,往队列中加入一个任务。

protected long delayNanos(long currentTimeNanos) {  
    ScheduledFutureTask<?> delayedTask = delayedTaskQueue.peek();  
    if (delayedTask == null) {  
        return SCHEDULE_PURGE_INTERVAL;  
    }  
    return delayedTask.delayNanos(currentTimeNanos);  
}  

//ScheduledFutureTask  
public long delayNanos(long currentTimeNanos) {  
    return Math.max(0, deadlineNanos() - (currentTimeNanos - START_TIME));  
}  
public long deadlineNanos() {  
    return deadlineNanos;  
}

2、如果延迟任务队列中第一个任务的最晚还能延迟执行的时间小于500000纳秒,且selectCnt == 0(selectCnt 用来记录selector.select方法的执行次数和标识是否执行过selector.selectNow()),则执行selector.selectNow()方法并立即返回。
3、否则执行selector.select(timeoutMillis),这个方法已经在深入浅出NIO Socket分析过。
4、如果已经存在ready的selectionKey,或者selector被唤醒,或者taskQueue不为空,或则scheduledTaskQueue不为空,则退出循环。
5、如果 selectCnt 没达到阈值SELECTOR_AUTO_REBUILD_THRESHOLD(默认512),则继续进行for循环。其中 currentTimeNanos 在select操作之后会重新赋值当前时间,如果selector.select(timeoutMillis)行为真的阻塞了timeoutMillis,第二次的timeoutMillis肯定等于0,此时selectCnt 为1,所以会直接退出for循环。
6、如果触发了epool cpu100%的bug,会发生什么?
selector.select(timeoutMillis)操作会立即返回,不会阻塞timeoutMillis,导致 currentTimeNanos 几乎不变,这种情况下,会反复执行selector.select(timeoutMillis),变量selectCnt 会逐渐变大,当selectCnt 达到阈值,则执行rebuildSelector方法,进行selector重建,解决cpu占用100%的bug。

public void rebuildSelector() {  
        if (!inEventLoop()) {  
            execute(new Runnable() {  
                @Override  
                public void run() {  
                    rebuildSelector();  
                }  
            });  
            return;  
        }  
        final Selector oldSelector = selector;  
        final Selector newSelector;  
        if (oldSelector == null) {  
            return;  
        }  
        try {  
            newSelector = openSelector();  
        } catch (Exception e) {  
            logger.warn("Failed to create a new Selector.", e);  
            return;  
        }  
        // Register all channels to the new Selector.  
        int nChannels = 0;  
        for (;;) {  
            try {  
                for (SelectionKey key: oldSelector.keys()) {  
                    Object a = key.attachment();  
                    try {  
                        if (key.channel().keyFor(newSelector) != null) {  
                            continue;  
                        }  
                        int interestOps = key.interestOps();  
                        key.cancel();  
                        key.channel().register(newSelector, interestOps, a);  
                        nChannels ++;  
                    } catch (Exception e) {  
                        logger.warn("Failed to re-register a Channel to the new Selector.", e);  
                        if (a instanceof AbstractNioChannel) {  
                            AbstractNioChannel ch = (AbstractNioChannel) a;  
                            ch.unsafe().close(ch.unsafe().voidPromise());  
                        } else {  
                            @SuppressWarnings("unchecked")  
                            NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;  
                            invokeChannelUnregistered(task, key, e);  
                        }  
                    }  
                }  
            } catch (ConcurrentModificationException e) {  
                // Probably due to concurrent modification of the key set.  
                continue;  
            }  

            break;  
        }    
        selector = newSelector;  
        try {  
            // time to close the old selector as everything else is registered to the new one  
            oldSelector.close();  
        } catch (Throwable t) {  
            if (logger.isWarnEnabled()) {  
                logger.warn("Failed to close the old Selector.", t);  
            }  
        }    
        logger.info("Migrated " + nChannels + " channel(s) to the new Selector.");  
    }

rebuildSelector过程:
1、通过方法openSelector创建一个新的selector。
2、将old selector的selectionKey执行cancel。
3、将old selector的channel重新注册到新的selector中。

对selector进行rebuild后,需要重新执行方法selectNow,检查是否有已ready的selectionKey。

方法selectNow()或select(oldWakenUp)返回后,执行方法processSelectedKeys和runAllTasks。
1、processSelectedKeys 用来处理有事件发生的selectkey,这里对优化过的方法processSelectedKeysOptimized进行分析:

private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) {
    for (int i = 0;; i ++) {
        final SelectionKey k = selectedKeys[i];
        if (k == null) {
            break;
        }
        // null out entry in the array to allow to have it GC'ed once the Channel close
        // See https://github.com/netty/netty/issues/2363
        selectedKeys[i] = null;

        final Object a = k.attachment();

        if (a instanceof AbstractNioChannel) {
            processSelectedKey(k, (AbstractNioChannel) a);
        } else {
            @SuppressWarnings("unchecked")
            NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
            processSelectedKey(k, task);
        }

        if (needsToSelectAgain) {
            // null out entries in the array to allow to have it GC'ed once the Channel close
            // See https://github.com/netty/netty/issues/2363
            for (;;) {
                i++;
                if (selectedKeys[i] == null) {
                    break;
                }
                selectedKeys[i] = null;
            }

            selectAgain();
            // Need to flip the optimized selectedKeys to get the right reference to the array
            // and reset the index to -1 which will then set to 0 on the for loop
            // to start over again.
            //
            // See https://github.com/netty/netty/issues/1523
            selectedKeys = this.selectedKeys.flip();
            i = -1;
        }
    }
}

在优化过的方法中,有事件发生的selectkey存放在数组selectedKeys中,通过遍历selectedKeys,处理每一个selectkey,具体处理过程,会在后续进行分析。

2、runAllTasks 处理非I/O任务。
如果 ioRatio 不为100时,方法runAllTasks的执行时间只能为ioTime * (100 - ioRatio) / ioRatio,其中ioTime 是方法processSelectedKeys的执行时间。

protected boolean runAllTasks(long timeoutNanos) {
    fetchFromScheduledTaskQueue();
    Runnable task = pollTask();
    if (task == null) {
        return false;
    }

    final long deadline = ScheduledFutureTask.nanoTime() + timeoutNanos;
    long runTasks = 0;
    long lastExecutionTime;
    for (;;) {
        try {
            task.run();
        } catch (Throwable t) {
            logger.warn("A task raised an exception.", t);
        }
        runTasks ++;
        // Check timeout every 64 tasks because nanoTime() is relatively expensive.
        // XXX: Hard-coded value - will make it configurable if it is really a problem.
        if ((runTasks & 0x3F) == 0) {
            lastExecutionTime = ScheduledFutureTask.nanoTime();
            if (lastExecutionTime >= deadline) {
                break;
            }
        }
        task = pollTask();
        if (task == null) {
            lastExecutionTime = ScheduledFutureTask.nanoTime();
            break;
        }
    }
    this.lastExecutionTime = lastExecutionTime;
    return true;
}

方法fetchFromScheduledTaskQueue把scheduledTaskQueue中已经超过延迟执行时间的任务移到taskQueue中等待被执行。

private void fetchFromScheduledTaskQueue() {
    if (hasScheduledTasks()) {
        long nanoTime = AbstractScheduledEventExecutor.nanoTime();
        for (;;) {
            Runnable scheduledTask = pollScheduledTask(nanoTime);
            if (scheduledTask == null) {
                break;
            }
            taskQueue.add(scheduledTask);
        }
    }
}

依次从taskQueue任务task执行,每执行64个任务,进行耗时检查,如果已执行时间超过预先设定的执行时间,则停止执行非IO任务,避免非IO任务太多,影响IO任务的执行。

 

posted @ 2017-03-23 16:43  烁2012  阅读(869)  评论(0编辑  收藏  举报