BZOJ 3144 [HNOI2013]切糕 (最大流+巧妙的建图)
最大流神题
把点权转化为边权,切糕里每个点$(i,j,k)$向$(i,j,k+1)$连一条流量为$v(i,j,k)$的边
源点$S$向第$1$层的点连边,第$R+1$层的点向$T$连边,流量均为$inf$
跑最大流,最大流的流量就是答案
因为每条纵轴都取了最小的$v$,被割掉的边就是最小的$v$所在的边
然而题目里还有限制,相邻两个纵轴取值的位置相差的距离不能超过$D$
如何处理这个限制呢?
每个点$(i,j,k)$向$(x,y,k-D)$连流量为$inf$的边,$(x,y)$是$(i,j)$相邻的纵轴
假设纵轴$(i,j)$的割点是$(i,j,k)$
如果$(x,y)$的割点在$(x,y,k-D)$下面,一定会有一条流量从纵轴$(i,j)$流到$(x,y)$里,然后向上流到汇点$T$
巧妙地解决了距离的限制问题
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #define N1 67010 5 #define M1 400010 6 #define L1 45 7 using namespace std; 8 const int inf=0x3f3f3f3f; 9 10 int gint() 11 { 12 int ret=0,fh=1;char c=getchar(); 13 while(c<'0'||c>'9'){if(c=='-')fh=-1;c=getchar();} 14 while(c>='0'&&c<='9'){ret=ret*10+c-'0';c=getchar();} 15 return ret*fh; 16 } 17 struct Edge{ 18 int to[M1<<1],nxt[M1<<1],flow[M1<<1],head[N1],cte; 19 void ae(int u,int v,int f) 20 { 21 cte++; to[cte]=v; nxt[cte]=head[u]; 22 head[u]=cte; flow[cte]=f; 23 } 24 }e; 25 26 int dep[N1],que[M1],cur[N1],n,m,h,D,hd,tl,S,T; 27 int bfs() 28 { 29 int x,j,v; 30 memset(dep,-1,sizeof(dep)); memcpy(cur,e.head,sizeof(cur)); 31 hd=1,tl=0; que[++tl]=S; dep[S]=0; 32 while(hd<=tl) 33 { 34 x=que[hd++]; 35 for(j=e.head[x];j;j=e.nxt[j]) 36 { 37 v=e.to[j]; 38 if( dep[v]==-1 && e.flow[j]>0 ) 39 { 40 dep[v]=dep[x]+1; 41 que[++tl]=v; 42 } 43 } 44 } 45 return dep[T]!=-1; 46 } 47 int dfs(int x,int limit) 48 { 49 int j,v,flow,ans=0; 50 if(!limit||x==T) return limit; 51 for(j=cur[x];j;j=e.nxt[j]) 52 { 53 v=e.to[j]; cur[x]=j; 54 if( dep[v]==dep[x]+1 && (flow=dfs(v,min(limit,e.flow[j]))) ) 55 { 56 e.flow[j]-=flow; limit-=flow; 57 e.flow[j^1]+=flow; ans+=flow; 58 if(!limit) break; 59 } 60 } 61 return ans; 62 } 63 int Dinic() 64 { 65 int mxflow=0,j,v,ans=0; 66 while(bfs()) 67 mxflow+=dfs(S,inf); 68 return mxflow; 69 } 70 71 int xx[4]={-1,0,1,0},yy[4]={0,1,0,-1}; 72 int v[L1][L1][L1],id[L1][L1][L1]; 73 inline int check(int x,int y){return (x<1||y<1||x>n||y>m)?0:1;} 74 75 int main() 76 { 77 scanf("%d%d%d%d",&n,&m,&h,&D); 78 int i,j,k,x,y,w,p; e.cte=1; S=0; T=n*m*(h+1)+1; 79 for(k=1;k<=h+1;k++) for(i=1;i<=n;i++) for(j=1;j<=m;j++) id[k][i][j]=(k-1)*n*m+(i-1)*m+j; 80 for(k=1;k<=h;k++) for(i=1;i<=n;i++) for(j=1;j<=m;j++) 81 { 82 w=v[k][i][j]=gint(), x=id[k][i][j]; 83 e.ae(x,x+n*m,w), e.ae(x+n*m,x,0); 84 if(k<=D) continue; 85 //x+=n*m; 86 for(p=0;p<4;p++) 87 { 88 if(!check(i+xx[p],j+yy[p])) continue; 89 y=id[k-D][i+xx[p]][j+yy[p]]; 90 e.ae(x,y,inf); e.ae(y,x,0); 91 } 92 } 93 for(i=1;i<=n;i++) for(j=1;j<=m;j++) e.ae(S,id[1][i][j],inf), e.ae(id[1][i][j],S,0); 94 for(i=1;i<=n;i++) for(j=1;j<=m;j++) e.ae(id[h+1][i][j],T,inf), e.ae(T,id[h+1][i][j],0); 95 printf("%d\n",Dinic()); 96 return 0; 97 }