luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)

题目大意:略 洛谷传送门

杜教筛入门题?

以下都是常规套路的变形,不再过多解释

$\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$

$\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ij\sum\limits_{d|gcd(i,j)}\varphi(d)$

$\sum\limits_{d=1}^{N} \varphi(d) \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ij$

$\sum\limits_{d=1}^{N} \varphi(d) d^{2} \sum\limits_{i=1}^{\left \lfloor \frac{N}{d} \right \rfloor}\sum\limits_{j=1}^{\left \lfloor \frac{N}{d} \right \rfloor}ij$

令$f(d)=\varphi(d) d^{2}$,由于$\varphi(d)$和$1(d)$都是积性函数,所以$f(d)$是积性函数

数据范围好像有点大?$n \leq 10^{10}$?杜教筛!

考虑设计一个和$f$搭配且同为积性函数$g$,且$(f*g)$能很快计算出来,令$f(n)$前缀和是$S(n)$

给出杜教筛的推导式

$S(n)=\sum\limits_{i=1}^{N}(f*g)(i)-\sum\limits_{i=2}^{N}g(i)S(\left \lfloor \frac{N}{i} \right \rfloor)$

根据常见狄利克雷卷积形式$id=1*\varphi$,容易推出比较优秀的$g(d)=d^{2}$,那么$(f*g)(n)=\sum\limits_{d|n}f(d)*g(\frac{n}{d})=\varphi(d) d^{2}(\frac{n}{d})^{2}=n^{3}$

$g$的前缀和就是平方和,$(f*g)$的前缀和就是立方和,可以$O(1)$求出来

一定要多取模,不然有些地方可能会爆$longlong$

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 #define N1 5000010
 5 #define M1 3000010
 6 #define ll long long
 7 #define dd double
 8 #define cll const long long 
 9 using namespace std;
10 
11 const int maxn=5000000;
12 
13 void exgcd(ll a,ll b,ll &x,ll &y)
14 {
15     if(!b){ x=1; y=0; return; }
16     exgcd(b,a%b,x,y); ll t=x; x=y; y=t-a/b*y; 
17 }
18 struct Hsh{
19 #define M 3000000
20 int head[M1],nxt[M1],val[M1],cte;ll to[M1];
21 void ins(ll x,int w)
22 {
23     int j,y=x%M;ll v;
24     for(j=head[y];j;j=nxt[j]){ v=to[j]; if(v==x) return; }
25     cte++; to[cte]=x; val[cte]=w; nxt[cte]=head[y]; head[y]=cte;
26 }
27 int query(ll x)
28 {
29     int j,y=x%M;ll v;
30     for(j=head[y];j;j=nxt[j]){ v=to[j]; if(v==x) return val[j]; }
31     return -1;
32 }
33 #undef M 
34 }h;
35 
36 ll n,m,inv2,inv6;
37 int use[N1],pr[N1],cnt,phi[N1];
38 ll f[N1],sf[N1];
39 void get_mu(cll &jr)
40 {
41     int i,j; phi[1]=f[1]=sf[1]=use[1]=1;
42     for(i=2;i<=maxn;i++)
43     {
44         if(!use[i]){ pr[++cnt]=i; phi[i]=i-1; }
45         for(j=1;j<=cnt&&i*pr[j]<=maxn;j++)
46         {
47             use[i*pr[j]]=1;
48             if(i%pr[j]){ phi[i*pr[j]]=phi[i]*(pr[j]-1)%jr; }
49             else{ phi[i*pr[j]]=phi[i]*pr[j]%jr; break; }
50         }
51         f[i]=1ll*i*i%jr*phi[i]%jr; 
52         sf[i]=(sf[i-1]+f[i])%jr;
53     }
54 }
55 int F(ll x,cll &jr)
56 {
57     if(x<=maxn) return sf[x];
58     ll ans=h.query(x); if(ans!=-1) return ans; 
59     ll i,la,pi,pla; ans=x%jr*(x+1)%jr*inv2%jr; ans=ans*ans%jr;
60     for(i=2;i<=x;i=la+1){
61         la=x/(x/i); pi=i%jr; pla=la%jr;
62         ans-=(1ll*pla%jr*(pla+1)%jr*(2*pla+1)%jr-1ll*(pi-1)%jr*(pi)%jr*(2*pi-1)%jr)*inv6%jr*F(x/i,jr)%jr;
63     }
64     ans=(ans%jr+jr)%jr;
65     h.ins(x,ans);
66     return ans;
67 }
68 
69 int main()
70 {
71     scanf("%lld%lld",&m,&n); 
72     cll jr=m; get_mu(jr); ll i,la,x,y,ans=0;
73     exgcd(6,jr,inv6,y); exgcd(2,jr,inv2,y); inv6=(inv6%jr+jr)%jr; inv2=(inv2%jr+jr)%jr;
74     for(i=1;i<=n;i=la+1)
75     {
76         la=n/(n/i); 
77         if((n/i)&1) x=(n/i+1)/2%jr*((n/i)%jr)%jr;
78         else x=(n/i)/2%jr*((n/i+1)%jr)%jr;
79         ans=(x*x%jr*(F(la,jr)-F(i-1,jr)+jr)+ans)%jr;
80     }
81     printf("%lld\n",ans);
82     return 0;
83 }

 

posted @ 2019-01-08 13:59  guapisolo  阅读(143)  评论(0编辑  收藏  举报