BZOJ 4522: [Cqoi2016]密钥破解 exgcd+Pollard-Rho
挺简单的,正好能再复习一遍 $exgcd$~
按照题意一遍一遍模拟即可,注意一下 $pollard-rho$ 中的细节.
#include <ctime> #include <cmath> #include <cstdio> #include <algorithm> #define ll long long #define ull unsigned long long #define setIO(s) freopen(s".in","r",stdin), freopen(s".out","w",stdout) using namespace std; ll N,E,C,D,n,P,Q,R; int array[20]={2,11,13,17,19}; ll exgcd(ll a,ll b,ll &x,ll &y) { if(!b) { x=1,y=0; return a; } ll ans=exgcd(b,a%b,x,y),tmp=x; x=y,y=tmp-a/b*y; return ans; } ll mult(ll x,ll y,ll mod) { ll tmp=(long double)x/mod*y; return ((ull)x*y-tmp*mod+mod)%mod; } ll qpow(ll base,ll k,ll mod) { ll tmp=1; for(;k;k>>=1,base=mult(base,base,mod)) if(k&1) tmp=mult(tmp,base,mod); return tmp; } int isprime(ll x) { if(x<=1) return 1; int i,j,k; ll pre,cur,a; for(cur=x-1,k=0;cur%2==0;cur>>=1) ++k; for(i=0;i<5;++i) { if(x==array[i]) return 1; a=pre=qpow(array[i],cur,x); for(j=1;j<=k;++j) { a=mult(pre,pre,x); if(a==1&&pre!=1&&pre!=x-1) return 0; pre=a; } if(a!=1) return 0; } return 1; } ll F(ll x,ll c,ll mod) { return (mult(x,x,mod)+c)%mod; } ll pollard_rho(ll x) { int step,k; ll s=0,t=0,c=rand()%(x-1)+1,val=1,d; for(k=1;;k<<=1,s=t,val=1) { for(step=1;step<=k;++step) { t=F(t,c,x); val=mult(val,abs(t-s),x); if(step%127==0) { d=__gcd(val,x); if(d>1) return d; } } d=__gcd(val,x); if(d>1) return d; } } void solve_d() { for(P=N;P>=N;) P=pollard_rho(N); Q=N/P; R=(P-1)*(Q-1); ll x,y,gcd; gcd=exgcd(E,R,x,y); x=(x+R)%R; D=x; } int main() { int i,j; // setIO("input"); srand((unsigned)time(NULL)); scanf("%lld%lld%lld",&E,&N,&C); for(P=N;P>=N;) P=pollard_rho(N); Q=N/P; R=(P-1)*(Q-1); ll x,y,gcd; gcd=exgcd(E,R,x,y); x=(x+R)%R; D=x; n=qpow(C,D,N); printf("%lld %lld\n",D,n); return 0; }