BZOJ 3667: Rabin-Miller算法 (Pollard-Rho 模板)
说实话,我知道每一步都干啥,但我完全不知道为啥这么做,也不知道为什么是正确的,反正会用就行了~
#include <cmath> #include <cstdio> #include <algorithm> #define ll long long #define ull unsigned long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; int array[20]={2,3,5,7,11,13,17,19}; ll Max; ll mult(ll x,ll y,ll mod) { ll tmp=(long double)x/mod*y; return ((ull)x*y-(ull)tmp*mod+mod)%mod; } ll qpow(ll base,ll k,ll mod) { ll tmp=1; for(;k;k>>=1,base=mult(base,base,mod)) if(k&1) tmp=mult(tmp,base,mod); return tmp; } ll F(ll x,ll c,ll mod) { return (mult(x,x,mod)+c)%mod; } int isprime(ll x) { if(x<=1) return 1; int k,i,j; ll cur,a,pre; for(k=0,cur=x-1;cur%2==0;cur>>=1) ++k; for(i=0;i<8;++i) { if(x==array[i]) return 1; pre=a=qpow(array[i],cur,x); for(j=1;j<=k;++j) { a=mult(a,a,x); if(a==1&&pre!=1&&pre!=x-1) return 0; pre=a; } if(a!=1) return 0; } return 1; } ll pollard_rho(ll x) { ll s=0,t=0,c=rand()%(x-1)+1,val=1,d; int k,step; for(k=1;;k<<=1,s=t,val=1) { for(step=1;step<=k;++step) { t=F(t,c,x); val=mult(val,abs(s-t),x); if(step%127==0) { d=__gcd(val,x); if(d>1) return d; } } d=__gcd(val,x); if(d>1) return d; } } void solve(ll x) { if(x<=Max||x<2) return; if(isprime(x)) { Max=max(Max,x); return; } ll p=x; for(;p>=x;) p=pollard_rho(x); for(;x%p==0;) x/=p; solve(x),solve(p); } int main() { int T,i,j; // setIO("input"); scanf("%d",&T); for(i=1;i<=T;++i) { ll a; scanf("%lld",&a),Max=0,solve(a); if(Max==a) printf("Prime\n"); else printf("%lld\n",Max); } return 0; }