BZOJ 2820: YY的GCD 莫比乌斯反演 + 数学推导 + 线性筛
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]$
按套路前提 $gcd(i,j)$
$\Rightarrow\sum_{d=1}^{n}d\in prime\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$
后面的 $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$ 是反演模板
$\Rightarrow \sum_{b=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(b)\left \lfloor \frac{n}{db} \right \rfloor \left \lfloor \frac{m}{db} \right \rfloor$
答案为 $\sum_{d=1}^{n}d\in prime \sum_{b=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(b)\left \lfloor \frac{n}{db} \right \rfloor \left \lfloor \frac{m}{db} \right \rfloor$
用这个式子整除分块算是 $O(n)$ 的,我们优化一下.
令 $T=db$
则原式 $=\sum_{T=1}^{n}\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor\sum_{d|T,d\in prime}\mu(\frac{T}{d})$
发现后面的 $\sum_{d|T,d\in prime}\mu(\frac{T}{d})$ 可以提前预处理(只需枚举质数并暴力更新就行)
#include <cstdio> #include <algorithm> #include <cstring> #include <vector> #define maxn 10000009 const long long N = 10000009 ; #define ll long long #define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std; int vis[maxn],prime[maxn],mu[maxn],g[maxn],tot; long long sumv[maxn]; void init(){ mu[1]=1; for(int i=2;i<maxn;++i) { if(!vis[i]) { prime[++tot]=i,mu[i]=-1; } for(int j=1;j<=tot && (ll)prime[j]*i < (ll)maxn;++j) { vis[prime[j]*i]=1; if(i % prime[j]==0) { mu[i * prime[j]]=0; break; } mu[i * prime[j]]=-mu[i]; } } for(int i=1;i<=tot;++i) for(ll j=1;(ll)j*prime[i]<N;++j) g[prime[i]*j]+=mu[j]; for(int i=1;i<=10000000;++i) sumv[i] = (long long)sumv[i-1]+g[i]; } ll work(int n,int m) { if(n>m) swap(n,m); long long ans=0; for(ll i=1,j;i<=n;i=j+1) { j = min(n/(n/i),m/(m/i)); ans += (n/i) * (m/i) * (sumv[j] - sumv[i-1]); } return ans; } int main(){ //setIO("input"); init(); int T,x,y; scanf("%d",&T); while(T--) scanf("%d%d",&x,&y),printf("%lld\n",work(x,y)); return 0; }