BZOJ 2820: YY的GCD 莫比乌斯反演 + 数学推导 + 线性筛

求 $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]$
 
按套路前提 $gcd(i,j)$
 
$\Rightarrow\sum_{d=1}^{n}d\in prime\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$
 
后面的 $\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==d]$ 是反演模板
 
$\Rightarrow \sum_{b=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(b)\left \lfloor \frac{n}{db} \right \rfloor \left \lfloor \frac{m}{db} \right \rfloor$
 
答案为 $\sum_{d=1}^{n}d\in prime \sum_{b=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\mu(b)\left \lfloor \frac{n}{db} \right \rfloor \left \lfloor \frac{m}{db} \right \rfloor$
 
用这个式子整除分块算是 $O(n)$ 的,我们优化一下.
 
令 $T=db$
 
则原式 $=\sum_{T=1}^{n}\left \lfloor \frac{n}{T} \right \rfloor\left \lfloor \frac{m}{T} \right \rfloor\sum_{d|T,d\in prime}\mu(\frac{T}{d})$
 
发现后面的 $\sum_{d|T,d\in prime}\mu(\frac{T}{d})$ 可以提前预处理(只需枚举质数并暴力更新就行)
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector> 
#define maxn 10000009
const long long N = 10000009 ; 
#define ll long long 
#define setIO(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)  
using namespace std; 
int vis[maxn],prime[maxn],mu[maxn],g[maxn],tot; 
long long sumv[maxn]; 
void init(){
    mu[1]=1; 
    for(int i=2;i<maxn;++i) {
        if(!vis[i]) { prime[++tot]=i,mu[i]=-1; }
        for(int j=1;j<=tot && (ll)prime[j]*i < (ll)maxn;++j) 
        {
            vis[prime[j]*i]=1; 
            if(i % prime[j]==0) {
                mu[i * prime[j]]=0; 
                break; 
            }
            mu[i * prime[j]]=-mu[i]; 
        }
    } 
    for(int i=1;i<=tot;++i)
        for(ll j=1;(ll)j*prime[i]<N;++j) 
            g[prime[i]*j]+=mu[j];
    for(int i=1;i<=10000000;++i) sumv[i] = (long long)sumv[i-1]+g[i]; 
}
ll work(int n,int m) {
    if(n>m) swap(n,m); 
    long long ans=0; 
    for(ll i=1,j;i<=n;i=j+1) {
        j = min(n/(n/i),m/(m/i)); 
        ans += (n/i) * (m/i) * (sumv[j] - sumv[i-1]); 
    }
    return ans; 
}
int main(){
    //setIO("input");
    init();  
    int T,x,y; scanf("%d",&T);
    while(T--) scanf("%d%d",&x,&y),printf("%lld\n",work(x,y));  
    return 0; 
}

  

posted @ 2019-02-26 19:03  EM-LGH  阅读(219)  评论(0编辑  收藏  举报