组合数
组合数
\(1+3+5+...+(2*n-1) = n^2\)
\(2+4+6+...+(2*n) = n*(n+1)\)
\(1+2+3+...+n = \frac{n*(n+1)}{2}\)
\(C_{n}^{m}= C_{n-1}^{m-1} + C_{n-1}^m\)
模板
取模
int f[maxn],inv[maxn];
int qpow(int a,int b){
int res=1;
while(b){
if(b&1)res=res*a%mod;
a=a*a%mod;;
b/=2;
}
return res;
}
void init(){
f[0]=1;
for(int i=1;i<=maxn-1;i++)f[i]=f[i-1]*i%mod;
inv[maxn-1]=qpow(f[maxn-1],mod-2);
for(int i=maxn-2;i>=0;i--)inv[i]=inv[i+1]*(i+1)%mod;
}
int C(int n,int m){
return f[n]*inv[m]%mod*inv[n-m]%mod;
}
数值较小,且不可以取模
const int maxn = 1000 + 5;
double c[maxn][maxn];
void init() {
c[0][0] = 1;
for (int i = 1; i < maxn;i++) {
c[i][0] = c[i][i] = 1;
for (int j = 1;j<i;j++) {
c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
}
}
}