环状二维数组(改进版)

上一篇环状二维数组还存在问题,当时并未判断产生的子矩阵是否超过矩阵的范围,所以结果会出现问题。

改进版的程序中对此进行了判断。

此问题分为两种,一种是最大子数组成环,一种是最大子数组未成环。未成环的部分之前已实现,下面是成环部分。

开始的思路是:将矩阵进行扩大,类似于一维数组,但是扩大后就会出现子矩阵的范围有可能超出矩阵的范围。所以在此处要有一个判断。

改进后的程序

#include <iostream>
#include<time.h>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
#define MAXN 100

int A[MAXN][MAXN];
int PartSum[MAXN][MAXN];

//计算子矩阵的和
int MatrixSum(int s, int t, int i, int j)
{
    return PartSum[i][j] - PartSum[i][t - 1] - PartSum[s - 1][j] + PartSum[s - 1][t - 1];
}

int main()
{
    srand((unsigned)time(NULL));
    int row, col, i, j;
    cout << "请输入二维数组的行数和列数:";
    cin >> row >> col;
    for (i = 1; i <= row; i++)
    {
        for (j = 1; j <= 2 * col - 1; j++)
        {
            for (j = 1; j <=col; j++)
            {
                A[i][j] = rand() % 20 - 10;
                    cout << A[i][j] << " \t";
            }
            for (j = col+1; j <= 2 * col - 1; j++)
            {
                A[i][j] = A[i][j - col];
                cout << A[i][j] << " \t";
            }
            //cout << A[i][j] << " ";
        }
        cout<<endl;
    }
    
    for (i = 0; i <= row; i++)
        PartSum[i][0] = 0;
    for (j = 0; j <=2* col-1; j++)
        PartSum[0][j] = 0;
    // 计算矩阵的部分和
    for (i = 1; i <= row; i++)
    for (j = 1; j <= col; j++)
        PartSum[i][j] = A[i][j] + PartSum[i - 1][j] + PartSum[i][j - 1] - PartSum[i - 1][j - 1];
    int n1, n2;
    int maxsofar = A[1][1];
    for (n1 = 1; n1 <= row; n1++)
    for (n2 = n1; n2 <= row; n2++)
    {
        // 将子矩阵上下边界设为第n1行和第n2行,在这些子矩阵中取最大值,类似于一维数组求最大值
        //未成环
        int maxendinghere = MatrixSum(n1, 1, n2, 1);
        for (j = 2; j <= col-1; j++)
        {
            maxendinghere = max(MatrixSum(n1, j, n2, j), MatrixSum(n1, j, n2, j) + maxendinghere);
            maxsofar = max(maxendinghere, maxsofar);
        }
        //成环
        int sum = MatrixSum(n1, 1, n2, 1);
        int start = sum;
        int sind = 1;
        for (i = 2; i <=row; i++)
        {
            sum += MatrixSum(n1, i, n2, i);
            if (sum > start)
            {
                start = sum;
                sind = i;
            }
        }
        maxendinghere = MatrixSum(n1, j, n2, j);
        int tind = row;
        for (j = row - 1; j >= 1; j--)
        {
            sum += MatrixSum(n1, j, n2, j);
            if (sum > maxendinghere)
            {
                maxendinghere = sum;
                tind = j;
            }
        }
        if (sind<tind && start + maxendinghere>maxsofar)
        {
            maxsofar = start + maxendinghere;
        }
    }
    cout << maxsofar;
}

posted @ 2015-04-26 19:40  eunicer  阅读(214)  评论(0编辑  收藏  举报