poj_3436 网络最大流

题目大意

    生产电脑的工厂将一台电脑分成P个部件来进行流水线生产组装,有N个生产车间,每个车间可以将一个半成品电脑添加某些部件,使之成为另一个半成品电脑或者成为一台完好的电脑,且每个车间有一个效率,即在单位时间内可以将K个半成品组装为另外K个半成品或者完好的电脑。每个车间在组装完成之后,都将组装后的半成品送到另外一个车间,成品直接送到成品区。 
    现在给出这N个车间的组装原部件集合以及组装后的部件集合(其中 in[1,2,3...p]中 in[i]表示第i种组装元部件,out[1,2,3...p]中out[i]表示第i种组装后的部件。且in[i] = 0表示元部件集合中必须没有第i种部件,in[i]=1表示元部件集合中必须有第i种部件,in[i] = 2表示元部件集合中第i种部件可有可无;out[i]=0表示组装后的部件集合中没有第i种部件,out[i]=1表示组装后的集合中有第i种部件),以及组装效率。求怎样合理的分配N个车间之间的流量,使得组装效率最大。

题目分析

    在本题中的最大效率,可以视为各个车间构成的网络图的最大流量。那么,如何构造网络流图求出最大流量呢? 
    首先考虑将每个车间视为一个节点,若车间A的组装后的部件集合可以被车间B接受,那么单向连接车间A和B。但是,若车间A连接了车间B和车间C,那么A->B和A->C之间的路径容量无法控制。所以这种建图方式不好。 
    再考虑将每个车间拆分为两个节点,一个入节点,表示车间的组装原部件集合,一个出节点,表示车间组装后的部件集合,在入节点和出节点之间用一条容量为K的路径连接起来。若车间A的组装后部件集合可以被车间B的组装原部件集合所接受,那么连接车间A的出节点和车间B的入节点,同时,容量设为无穷大,这是因为车间的效率受其原部件-->组装后部件的组装效率决定,即车间的入节点到出节点的容量决定。 
    在构造好的图上从源点到汇点找最大流量,即为最大效率。

实现

#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define MAX_NODE 150
#define MAX_EDGE_NUM 300
#define INFINITE 1 << 25
#define min(a, b) a<b? a:b
struct Edge{
	int from;
	int to;
	int w;
	int next;
	int rev;
	bool operator == (const pair<int, int>& p){
		return from == p.first && to == p.second;
	}
};
Edge gEdges[MAX_EDGE_NUM];

int gEdgeCount;
int gFlow[MAX_NODE][MAX_NODE];
int gGap[MAX_NODE];
int gDist[MAX_NODE];
int gHead[MAX_NODE];
int gPre[MAX_NODE];
int gPath[MAX_NODE];

int gSource, gDestination;
void InsertEdge(int u, int v, int w){
	Edge* it = find(gEdges, gEdges + gEdgeCount, pair<int, int>(u, v));
	if (it != gEdges + gEdgeCount){
		it->w = w;
	}
	else{
		int e1 = gEdgeCount;
		gEdges[e1].from = u;
		gEdges[e1].to = v;
		gEdges[e1].w = w;
		gEdges[e1].next = gHead[u];
		gHead[u] = e1;

		gEdgeCount++;
		int e2 = gEdgeCount;
		gEdges[e2].from = v;
		gEdges[e2].to = u;
		gEdges[e2].w = 0;
		gEdges[e2].next = gHead[v];
		gHead[v] = e2;

		gEdges[e1].rev = e2;
		gEdges[e2].rev = e1;
		gEdgeCount++;
	}
}

void Bfs(){
	memset(gGap, 0, sizeof(gGap));
	memset(gDist, -1, sizeof(gDist));
	gGap[0] = 1;
	gDist[gDestination] = 0;
	queue<int>Q;
	Q.push(gDestination);
	while (!Q.empty()){
		int n = Q.front();
		Q.pop();
		for (int e = gHead[n]; e != -1; e = gEdges[e].next){
			int v = gEdges[e].to;
			if (gDist[v] >= 0)
				continue;
			gDist[v] = gDist[n] + 1;
			gGap[gDist[v]] ++;
			Q.push(v);
		}
	}
}

int ISAP(int n){ // n为节点的数目
	Bfs();
	int u = gSource;
	int e, d;
	int ans = 0;
	while (gDist[gSource] <= n){
		if (u == gDestination){ //增广
			int min_flow = INFINITE;
			for (e = gPath[u]; u != gSource; e = gPath[u = gPre[u]]){ //注意,先u = gPre[u], 再取 e = gPath[u]
				min_flow = min(min_flow, gEdges[e].w);
			}
			u = gDestination;
			for (e = gPath[u]; u != gSource; e = gPath[u = gPre[u]]){
				gEdges[e].w -= min_flow;
				gEdges[gEdges[e].rev].w += min_flow;

				gFlow[gPre[u]][u] += min_flow;
			}
			ans += min_flow;
		}
		for (e = gHead[u]; e != -1; e = gEdges[e].next){
			if (gEdges[e].w > 0 && gDist[u] == gDist[gEdges[e].to] + 1)
				break;
		}
		if (e >= 0){ //向前推进
			gPre[gEdges[e].to] = u; //前一个点
			gPath[gEdges[e].to] = e;//该点连接的前一个边
			u = gEdges[e].to;
		}
		else{
			d = n;
			for (e = gHead[u]; e != -1; e = gEdges[e].next){
				if (gEdges[e].w > 0)	//需要能够走通才行!!
					d = min(d, gDist[gEdges[e].to]);
			}
			if (--gGap[gDist[u]] == 0) //gap优化
				break;

			gDist[u] = d+1;		//重标号

			++gGap[gDist[u]];	//更新 gap!!
			if (u != gSource)
				u = gPre[u];//回溯
		}
	}
	return ans;
}

struct Node{
	int id;
	int p;
	int component[12];
	bool CanConnect(const Node& node){
		for (int i = 0; i < p; i++){
			if (component[i] == 0 && node.component[i] == 1 || component[i] == 1 && node.component[i] == 0)
				return false;
		}
		return true;
	}
};
Node gNodes[MAX_NODE];

void BuildGraph(int n){
	for (int i = 2; i <= n + 1; i++){
		if (gNodes[1].CanConnect(gNodes[i]))
			InsertEdge(1, i, INFINITE);
	}
	for (int i = n+2; i <= 2*n + 1; i++){
		for (int j = 2; j <= n + 1; j++){
			if (j + n != i && gNodes[i].CanConnect(gNodes[j]))
				InsertEdge(i, j, INFINITE);

		}
	}
	for (int i = n + 2; i <= 2 * n + 1; i++){
		if (gNodes[i].CanConnect(gNodes[2*n+2]))
			InsertEdge(i, 2*n+2, INFINITE);
	}
}
void print_graph(int n){
	for (int u = 1; u <= n; u++){
		printf("node %d links to ", u);
		for (int e = gHead[u]; e != -1; e = gEdges[e].next)
			printf("%d(flow = %d) ", gEdges[e].to, gEdges[e].w);
		printf("\n");
	}
}

int main(){
	int p, n, w, u, v;
	while (scanf("%d %d", &p, &n) != EOF){

		memset(gFlow, 0, sizeof(gFlow));
		memset(gHead, -1, sizeof(gHead));
		gEdgeCount = 0;

		int node_id = 1;			//构造源点
		gNodes[node_id].p = p;
		for (int i = 0; i < p; i++){
			gNodes[node_id].component[i] = 0;
		}
		node_id++;

		for (int i = 0; i < n; i++){
			scanf("%d", &w);
			u = node_id;
			gNodes[u].p = p;			
			for (int k = 0; k < p; k++){
				scanf("%d", &gNodes[u].component[k]);
			}

			v = node_id + n;
			gNodes[v].p = p;
			for (int k = 0; k < p; k++){
				scanf("%d", &gNodes[v].component[k]);
			}

			node_id++;
			InsertEdge(u, v, w);
		}
		node_id = 2 * n + 2;
		gNodes[node_id].p = p;
		for (int i = 0; i < p; i++){	//构造汇点
			gNodes[node_id].component[i] = 1;
		}
		gSource = 1; gDestination = 2 * n + 2;
		BuildGraph(n);
//		print_graph(2 * n + 2);
		int result = ISAP(2 * n + 2);
		printf("%d", result);
		int count = 0;
		vector<pair<int, int> > edge_vec;
		for (int i = n + 2; i <= 2 * n + 1; i++){
			for (int j = 2; j <= n + 1; j++){
				if (i != j + n && gFlow[i][j] > 0){
					count++;
					edge_vec.push_back(pair<int, int>(i, j));
				}
			}
		}
		printf(" %d\n", count);
		for (int k = 0; k < count; k ++){
			int i = edge_vec[k].first;
			int j = edge_vec[k].second;
			printf("%d %d %d\n", i - n - 1, j - 1, gFlow[i][j]);
		}
	}
	return 0;
}

 

posted @ 2015-10-17 15:18  农民伯伯-Coding  阅读(284)  评论(0编辑  收藏  举报