poj_3159 最短路

题目大意

    有N个孩子(N<=3000)分糖果。有M个关系(M<=150,000)。每个关系形如:A B C 表示第B个学生比第A个学生多分到的糖果数目,不能超过C。求第N个学生最多比第1个学生能多分几个糖果

题目分析

    题目求第N个学生可以比第1个学生多分糖果数目,假设有从第1个同学经过一系列关系,可以到达第N个同学,比如 存在路径1 1--->i1--->i2--->....ik--->N,表示同学i1比同学1最多多x1个糖果,同学i2比同学i1最多多x2个糖果....同学N比同学ik最多多xk+1个糖果; 还存在路径2 1--->j1-->j2.....-->jk--->N,表示同学j1比同学1最多多y1个糖果,同学j2比同学j1最多多y2个糖果....同学N比同学jk最多多jk+1个糖果...还存在路径3,4,5... 
    将各个同学视为图上的点,同学甲比乙最多多的糖果数视为甲到乙的边的长度。那么显然,同学N比同学1最多多的糖果数目为从1到N的最短路径,若大于最短路径,则观察从1到N的最短路径上经过的点,其中至少有相邻两点不满足要求(其中一个比另一个最多多x个糖果)。 
    题目转化为一个无负权边的无向图的单源最短路径问题,采用dijkstra算法解决。由于N^2 >> M,这是一个稀疏图,采用邻接矩阵存储。

题目实现(c++)

#include<stdio.h>
#include<string.h>
#include<vector>
#include<queue>
using namespace std;
#define MAX_NODE 30005
#define INFINITE 1 << 30
struct Edge{
	int vertex;			//该边连接的下一个顶点
	int dist;			//边的长度
	Edge(int v, int d) :
		vertex(v), dist(d){};
};
vector<vector<Edge> >gGraph; //存放图


bool gUsed[MAX_NODE];	//判断点v是否已经获得从原点s到该点的最短距离
int gDist[MAX_NODE];	//存放原点s到该点的当前最短距离

struct Compare{	//用于优先队列的比较
	bool operator()(const Edge& a, const Edge& b){
		return a.dist > b.dist;
	}
};

//注意,使用优先队列、set、map等结构时,注意合理的选择存放的元素,不要在push,pop的时候,改变已经存在于
//容器中的元素发生改变(因为要保证顺序性)
int Dijkstra(int s, int d, int n){
	memset(gUsed, false, sizeof(gUsed));
	priority_queue<Edge, vector<Edge>, Compare> pq;
	for (int i = 1; i <= n; i++)
		gDist[i] = INFINITE;

	gDist[s] = 0;
	Edge e(s, 0);
	pq.push(e);
	while (!pq.empty()){
		e = pq.top();
		pq.pop();
		if (gUsed[e.vertex])	//如果已经确定了从原点到该点的最短距离,则肯定也已经通过该点更新过了
								//其他邻接点的最短距离,则之后再从队列中取出该点,直接跳过
			continue;

		gUsed[e.vertex] = true;
		if (e.vertex == d){
			break;
		}
		for (int i = 0; i < gGraph[e.vertex].size(); i++){
			Edge& next_e = gGraph[e.vertex][i];
			if (!gUsed[next_e.vertex]){				
				if (gDist[next_e.vertex] > gDist[e.vertex] + e.dist){
					gDist[next_e.vertex] = gDist[e.vertex] + e.dist;		//更新邻接点,并放入队列
					pq.push(Edge(next_e.vertex, gDist[next_e.vertex]));
				}
			}
		}
	}
	return gDist[d];
}
int main(){
	int n, m, u, v, c;
	scanf("%d %d", &n, &m);
	
	gGraph.resize(n + 1);
	for (int i = 0; i < m; i++){
		scanf("%d %d %d", &u, &v, &c);
		gGraph[u].push_back(Edge(v, c)); 
	}
	int result = Dijkstra(1, n, n);
	printf("%d\n", result);
	return 0;
}

 

posted @ 2015-10-08 17:09  农民伯伯-Coding  阅读(371)  评论(0编辑  收藏  举报