poj_3580 伸展树

    自己伸展树做的第一个题 poj 3580 supermemo.

题目大意

    对一个数组进行维护,包含如下几个操作:

  1. ADD x, y, d 在 A[x]--A[y] 中的每个数都增加d
  2. REVERSE x, y 将 A[x]--A[y] 中的数进行反转,变为 A[y],A[y-1]....A[x+1],A[x]
  3. REVOLVE x, y, T 将 A[x]--A[y]中的数连续右移T次
  4. INSERT x, P 在A后添加数P
  5. DELETE x 删除A[x]
  6. MIN x, y 查询A[x]--A[y]中的最小值

思路

    对有序进行操作可选的数据结构有 线段树、treap、伸展树Splay等,这道题要求比较多,所以选用伸展树: 
    伸展树对数组进行维护的核心思想是,将需要维护的一组数单独提取出来,形成一棵子树(一般为整棵树的根节点的右子节点的左孩子节点 为根),然后再这个子树上进行操作。此时进行某些操作(如 ADD, REVERSE 等),只需要在根节点上做个标记,进行延迟处理(即在之后真正访问子节点时候才对子节点进行实际的更新操作),这样可以节省时间。 
    每次对树的节点进行修改(比如DELETE, INSERT等)之后,都要进行维护信息,此时需要Update一下,然后将该节点旋转至树根。 
    且在寻找一个区间的起始点对应在树中的节点的时候,都要将该节点所需要的所有信息带给该节点,这就要求在从根节点向下寻找该节点的时候,将路径上的所有节点(即该节点的祖先节点)上的标记都往下传,即PushDown。

实现(c++)

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<string.h>
#define MIN(a,b) a<b? a:b
#define MAX_NODE_NUM 200005
#define INFINITE 1 << 30

struct TreeNode{
    int data; 
    int parent;
    int child[2];
    int child_dir;

    //程序相关的信息
    bool reverse;
    int min;
    int lazy;
    int size;
    //节点的索引为0,表示该节点为无效节点。若节点的parent = 0, 表示该节点为根节点,若节点的子节点为0,表示没有相应的子节点
    TreeNode(int d = INFINITE) :
        data(d), parent(0), child_dir(0), reverse(false), min(INFINITE), lazy(0), size(1){
        child[0] = child[1] = 0; 
    }
    void Reset(){
        parent = 0;
        child[0] = child[1] = 0;
        reverse = false;
        size = 1;
        lazy = 0;
        min = INFINITE;
    }
};

TreeNode gTreeNode[MAX_NODE_NUM];
int gNumber[MAX_NODE_NUM];
int gNodeCount;
int gRootIndex;

void LinkNode(int par, int ch, int dir){
    gTreeNode[par].child[dir] = ch;
    gTreeNode[ch].parent = par;
    gTreeNode[ch].child_dir = dir;
}
//维护本节点信息
void Update(int node){
    gTreeNode[node].min = gTreeNode[node].data;
    gTreeNode[node].size = 1; 
    int left = gTreeNode[node].child[0], right = gTreeNode[node].child[1];
    if (left){
        gTreeNode[node].min = MIN(gTreeNode[node].min, gTreeNode[left].min);
        gTreeNode[node].size += gTreeNode[left].size;
    }
    if (right){
        gTreeNode[node].min = MIN(gTreeNode[node].min, gTreeNode[right].min);
        gTreeNode[node].size += gTreeNode[right].size;
    }
}

//向下更新信息
void PushDown(int node){ 
    int left = gTreeNode[node].child[0];
    int right = gTreeNode[node].child[1];
    if (gTreeNode[node].reverse){
        LinkNode(node, left, 1);
        LinkNode(node, right, 0);
        gTreeNode[left].reverse ^= true;
        gTreeNode[right].reverse ^= true;
        gTreeNode[node].reverse = false;
    }
    int tmp_add = gTreeNode[node].lazy;
    if (tmp_add){
        gTreeNode[node].data += tmp_add;

        gTreeNode[left].min += tmp_add;
        gTreeNode[left].lazy += tmp_add;
        gTreeNode[right].min += tmp_add;
        gTreeNode[right].lazy += tmp_add;

        gTreeNode[node].lazy = 0;
    }
}

int BuildTree(int beg, int end){
    if (beg > end){
        return 0;
    }
    if (beg == end){
        gTreeNode[gNodeCount].data = gTreeNode[gNodeCount].min = gNumber[beg];
        return gNodeCount++;
    }
    int mid = (beg + end) / 2;
    int left = BuildTree(beg, mid - 1);
    int right = BuildTree(mid + 1, end);

    gTreeNode[gNodeCount].data = gTreeNode[gNodeCount].min = gNumber[mid];
    LinkNode(gNodeCount, left, 0);
    LinkNode(gNodeCount, right, 1);
    Update(gNodeCount);
    return gNodeCount++;
}

//zig or zag旋转
void Rotate(int x){
    if (x == gRootIndex){
        return;
    }
    int y = gTreeNode[x].parent;
    PushDown(y);
    PushDown(x);
    int d = gTreeNode[x].child_dir;

    int z = gTreeNode[y].parent;
    LinkNode(z, x, gTreeNode[y].child_dir);
    LinkNode(y, gTreeNode[x].child[!d], d);
    LinkNode(x, y, !d);
    Update(y);
    if (y == gRootIndex){
        gRootIndex = x;
    }
}

//旋转操作,将node节点旋转到 f 节点下方
void Splay(int x, int f){
    if (x == f){
        return;
    }
    PushDown(x);
    int y = gTreeNode[x].parent, z = 0;
    while (y != f){
        z = gTreeNode[y].parent;
        if (z == f){
            Rotate(x);
            break;
        }
        if (gTreeNode[x].child_dir == gTreeNode[y].child_dir){ //一字型旋转
            Rotate(y);
            Rotate(x);
        }
        else{ //之字形旋转
            Rotate(x);
            Rotate(x);
        }
        y = gTreeNode[x].parent;
    }
    Update(x);
}
//获取伸展树中 第k个节点的index
int GetKthInTree(int k){
    int node = gRootIndex, left, tmp_size;
    while (node){
        PushDown(node); //注意要将与该节点有关的信息带下去
        left = gTreeNode[node].child[0];
        tmp_size = gTreeNode[left].size;
        if (!left){//left 为空节点
            if (k == 1){
                return node;
            }
            else{
                node = gTreeNode[node].child[1];
                k--;
                continue;
            }
        }
        if (tmp_size + 1 == k){
            return node;
        }
        else if (tmp_size >= k){
            node = left;
        }
        else{
            node = gTreeNode[node].child[1];
            k -= (tmp_size + 1);
        }        
    }
    return -1;
}

//选择区间,返回由该区间构成的子树的节点。节点为 根节点的右子节点的左子节点
int SelectInterval(int x, int y){
    if (x <= 0 || y > gNodeCount){
        printf("fuck this splay tree!!!\n");
        return -1;
    }
    if (x == 1 && y == gNodeCount - 1){
        return gRootIndex;
    }
    int node;
    if (x == 1){
        node = GetKthInTree(y + 1);
        Splay(node, 0);
        return gTreeNode[node].child[0];
    }
    if (y == gNodeCount - 1){
        node = GetKthInTree(x - 1);
        Splay(node, 0);
        return gTreeNode[node].child[1];
    }
    int node_beg = GetKthInTree(x - 1);
    Splay(node_beg, 0);
    int node_end = GetKthInTree(y + 1);
    Splay(node_end, gRootIndex);

    return gTreeNode[node_end].child[0];
}
void Add(int x, int y, int d){
    int node = SelectInterval(x, y);
    gTreeNode[node].min += d;
    gTreeNode[node].lazy += d;
    Splay(node, 0);
}

void Reverse(int x, int y){
    int node = SelectInterval(x, y);
    gTreeNode[node].reverse ^= true;  //注意是 ^= 而不是 直接 = (因为两次反转相当于不进行反转)
    Splay(node, 0);
}

void Revolve(int x, int y, int k){
    int w = y - x + 1;
    k = (k % w + w) % w;
    if (k == 0){
        return;
    }
    int node = SelectInterval(x, y);
    PushDown(node);

    int p = gTreeNode[node].parent;
    int node_x = GetKthInTree(x);
    Splay(node_x, p);
    PushDown(node_x);

    int node_y_sub_k = GetKthInTree(y - k);
    Splay(node_y_sub_k, node_x);
    PushDown(node_y_sub_k);

    int node_tmp = gTreeNode[node_y_sub_k].child[1];
    LinkNode(node_x, node_tmp, 0);
    gTreeNode[node_y_sub_k].child[1] = 0;

    //注意,node_y_sub_k 发生了改变,因此要更新
    Update(node_y_sub_k);

    Splay(node_tmp, 0);
}

void Insert(int x, int t){
    int node = SelectInterval(x, x);
    gTreeNode[gNodeCount].data = t;
    //将节点的信息push down,否则,如果该节点的信息没有被清除,在插入新节点后,可能会对新节点产生影响(因为新节点在该节点下方)
    PushDown(node);

    LinkNode(node, gNodeCount, 1);

    Splay(gNodeCount, 0);
    gNodeCount++;
}
void Delete(int x){
    int node = SelectInterval(x, x);
    PushDown(gTreeNode[node].parent);

    gNodeCount--;
    int p = gTreeNode[node].parent;
    gTreeNode[p].child[gTreeNode[node].child_dir] = 0; //去掉父节点的子节点
    //这里更改了,node,会导致node的父节点的信息发生改变,因此要进行维护!!!!
    Update(p);
    Splay(p, 0);

    p = gTreeNode[gNodeCount].parent;
    int left = gTreeNode[gNodeCount].child[0];
    int right = gTreeNode[gNodeCount].child[1];

    if (node == gNodeCount){
        gTreeNode[gNodeCount].Reset();
        return;
    }

    gTreeNode[node] = gTreeNode[gNodeCount];
    LinkNode(p, node, gTreeNode[gNodeCount].child_dir);
    if (p == 0){
        gRootIndex = node;  //可能会对根部造成改变
    }
    LinkNode(node, left, 0);
    LinkNode(node, right, 1);

    gTreeNode[gNodeCount].Reset();
}

int GetMin(int x, int y){
    int node = SelectInterval(x, y);
    //获得节点之后,一定要进行更新!!!
    PushDown(node);
    Update(node);
    return gTreeNode[node].min;
}

void debug(int node){
    if (node){
        debug(gTreeNode[node].child[0]);

        printf("node %d, parent = %d, left = %d, right = %d, data = %d, min = %d, lazy = %d, reverse = %d\n",
            node, gTreeNode[node].parent, gTreeNode[node].child[0], gTreeNode[node].child[1],
            gTreeNode[node].data, gTreeNode[node].min, gTreeNode[node].lazy, gTreeNode[node].reverse);

        debug(gTreeNode[node].child[1]);
    }
}
int main(){
    int node_num;
    gNodeCount = 1;
    scanf("%d", &node_num);
    for (int i = 0; i < node_num; i++){
        scanf("%d", gNumber + i);
    }

    gRootIndex = BuildTree(0, node_num - 1); //递归的方式构造一棵开始就平衡的二叉树
    gTreeNode[gRootIndex].parent = 0; //

    int query_num;
    scanf("%d", &query_num);
    char op[10];
    int x, y, tmp;

    for (int i = 0; i < query_num; i++){
//        debug(gRootIndex);

        scanf("%s", op);

        if (strcmp(op, "ADD") == 0){
            scanf("%d%d%d", &x, &y, &tmp);
            Add(x, y, tmp);
        }
        else if (strcmp(op, "REVERSE") == 0){
            scanf("%d%d", &x, &y);
            Reverse(x, y);
        }
        else if (strcmp(op, "REVOLVE") == 0){
            scanf("%d%d%d", &x, &y, &tmp);
            Revolve(x, y, tmp);
        }
        else if (strcmp(op, "INSERT") == 0){
            scanf("%d%d", &x, &tmp);
            Insert(x, tmp);
        }
        else if (strcmp(op, "DELETE") == 0){
            scanf("%d", &x);
            Delete(x);
        }
        else if (strcmp(op, "MIN") == 0){
            scanf("%d%d", &x, &y);
            printf("%d\n", GetMin(x, y));
        }
        /*
        for (int i = 1; i < gNodeCount; i ++){
            printf("%d ", GetMin(i, i));
        }
        printf("\n\n");
        */
    }
    return 0;
}

 

posted @ 2015-08-08 20:52  农民伯伯-Coding  阅读(442)  评论(0编辑  收藏  举报