poj_3468 线段树
题目大意
一个数列,每次操作可以是将某区间数字都加上一个相同的整数,也可以是询问一个区间中所有数字的和。(这里区间指的是数列中连续的若干个数)对每次询问给出结果。
思路
对于区间的查找更新操作,可以考虑使用伸展树、线段树等数据结构。这里使用线段树来解决。需要注意的是,对于一个区间的增加操作,如果每次都走到叶子节点进行更新,则必定超时,因此lazy方法来解决。即如果能从当前节点获得所需要的信息,则不必走到子节点。
实现(c++)
#define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<stdio.h> using namespace std; #define MAX_COUNT 100005 #define MAX(a, b) a>b? a:b #define MIN(a, b) a<b? a:b //查找两个相交的区间的并长度(即两个区间覆盖的总长度) int Interval(int beg1, int end1, int beg2, int end2){ int tmp = MAX(end1, end2); //注意不要 MAX(end1, end2) -MIN(beg1, beg2), 因为这样做在编译的时候宏定义展开, //和三目运算符一块,优先级导致结果出错!!!! tmp -= MIN(beg1, beg2); return (end1 - beg1 + end2 - beg2) - tmp + 1; } int gNumCount, gQueryCount; //总的数字的数目,总的查询次数 int gNumber[MAX_COUNT]; //线段树节点的数组 //线段树节点的定义 struct TreeNode{ int begin; //该节点覆盖区间的左边界 int end; //该节点覆盖区间的右边界 long long sum; //该节点覆盖区间的当前sum值,不包括 inc 可能增加的那些值(即实际的和应该为 sum + inc *(end - begin+1) long long inc; //该节点覆盖区间中的那些点 应该被增加的值(注意是该区间的所有点) }; struct TreeNode gTreeNodes[MAX_COUNT*4]; //自底向上的更新,将左右子的 sum 值相加得到 该节点的sum值 void PushUp(int node_index){ int left_child = 2 * node_index + 1; int right_child = 2 * node_index + 2; gTreeNodes[node_index].sum = gTreeNodes[left_child].sum + gTreeNodes[right_child].sum; } //自顶向下的更新操作,当该节点不能被查询区间全部覆盖,则需要向下走,去其子节点位置进行查询 //在查询之前,需要将 inc 值传递到子节点,同时该节点的sum值更新,inc值清零 void PushDown(int node_index){ TreeNode* node = gTreeNodes + node_index; int left_child = 2 * node_index + 1; int right_child = 2 * node_index + 2; node->sum += node->inc*(node->end - node->begin + 1); gTreeNodes[left_child].inc += node->inc; gTreeNodes[right_child].inc += node->inc; node->inc = 0; } void BuildTree(int node_index, int beg, int end){ TreeNode* node = gTreeNodes + node_index; node->inc = node->sum = 0; node->begin = beg; node->end = end; if (beg == end){ node->sum = gNumber[beg]; return; } int mid = (beg + end) / 2, left_child = 2 * node_index + 1, right_child = 2 * node_index + 2; BuildTree(left_child, beg, mid); BuildTree(right_child, mid + 1, end); //自底向上更新 PushUp(node_index); } void Add(int node_index, int beg, int end, long long c){ TreeNode* node = gTreeNodes + node_index; int left_child = 2 * node_index + 1, right_child = 2 * node_index + 2, mid = (node->begin + node->end) / 2; if (node->begin > end || node->end < beg){ return; } //如果当前结点被查询区间全部覆盖,则不向下传递,直接将inc值增加 if (node->begin >= beg && node->end <= end){ node->inc += c; return; } //如果节点不能被查询区间全部覆盖,则需要分裂节点向下传递,此时的sum值需要增加(inc * 两区间重合的长度) //而同时 inc 值保持不变 node->sum += (Interval(node->begin, node->end, beg, end) * c); int end1 = MIN(end, mid); int beg1 = MAX(beg, mid + 1); Add(left_child, beg, end1, c); Add(right_child, beg1, end, c); } long long QuerySum(int node_index, int beg, int end){ TreeNode* node = gTreeNodes + node_index; // printf("node %d's sum = %d\n", node_index, gTreeNodes[node_index].sum); // printf("node->beg = %d, node->end = %d, beg = %d, end = %d\n", node->begin, node->end, beg, end); int left_child = 2 * node_index + 1, right_child = 2 * node_index + 2, mid = (node->begin + node->end) / 2; long long sum = 0; if (node->begin > end || node->end < beg){ return sum; } if (node->begin >= beg && node->end <= end){ sum += (node->sum + node->inc*(node->end - node->begin + 1)); } else{ //向下分裂的更新操作 PushDown(node_index); int end1 = MIN(end, mid); int beg1 = MAX(beg, mid + 1); long long sum_left = QuerySum(left_child, beg, end1); long long sum_right = QuerySum(right_child, beg1, end); sum += (sum_left + sum_right); } return sum; } int main(){ scanf("%d %d", &gNumCount, &gQueryCount); for (int i = 0; i < gNumCount; i++){ scanf("%d", gNumber + i); } BuildTree(0, 0, gNumCount - 1); char op; int a, b; long long c; long long result; for (int i = 0; i < gQueryCount; i++){ getchar(); scanf("%c", &op); if (op == 'C'){ scanf("%d %d %lld", &a, &b, &c); Add(0, a- 1, b-1, c); /* for (int k = 0; k < 27; k++){ printf("node[%d]'s sum = %lld, inc = %lld\n", k, gTreeNodes[k].sum, gTreeNodes[k].inc); } */ } else if (op == 'Q'){ scanf("%d %d", &a, &b); result = QuerySum(0, a-1, b-1); printf("%lld\n", result); } } return 0; }