poj_2709 贪心算法

poj 2709 painter

题目要求

   给定涂料,每套涂料含有3-12种不同的颜色(开始时候给定选用的颜料套的颜色数目),
且一套涂料中每种颜色均有50ml。且一套涂料中的任意三种不同的颜色各X ml混合都可以获得 灰色颜料 X ml。
  现在给定需要的各个颜色的数量(这些颜色都属于同一套颜料),以及需要的灰色颜色的数量。
求最少需要多少套颜料才能获得这些颜色。

题目分析

  直觉告诉我们,使用贪心算法可以解决这个问题。通过使用最多量的颜色可以获得至少需要的颜
料的套数 minset, 用minset*50 减去这些颜色的数量,得到使用min_set的套数的颜料之后剩余的颜色的 数量。之后,使用贪心算法,每次选择剩余数量最多的三种颜色进行混合,这样做可以使得剩余的颜色的数目最
多,从而使得之后的配色有更多的选择;那么考虑每次混合数量最多的三种颜色的时候混合多少?
发现,每次只混合1 ml的灰色颜色可以保证正确性,而每次混合大于1ml的数量的灰色颜色,则无法保证正确性 (每次混合多少的灰色颜色应该是可以算出来的,但是不知道怎么去做。。。)

实现代码

    #include<iostream>
    #include<algorithm>
    #include<queue>
    using namespace std;
    #define MAX_NUM 13
    int paint[MAX_NUM];
    int bottle[MAX_NUM];
    bool cmp(const int a, const int b){
        return a > b;
    }

    int Resolve(int n, int gray_volume){
        sort(paint, paint + n, cmp);
        int min_bot = paint[0] / 50 + int(paint[0] % 50 != 0);
        int result = min_bot;
        if (gray_volume <= 0){
            return result;
        }
        for (int i = 0; i < n; i++){
            paint[i] = min_bot * 50 - paint[i];
        }
        sort(paint, paint + n, cmp);

        while (gray_volume){
            if (paint[2] == 0){
                for (int i = 0; i < n; i++){  //如果还有剩余的颜色的数目小于三种,则增加一套颜料
                    paint[i] += 50;
                }
                result++;
            }
            paint[0] --;   //每次只减少 1ml的量
            paint[1] --;
            paint[2] --;
            gray_volume--;
            sort(paint, paint + n, cmp);
        }

        return result;
    }

    int main(){
        int n, gray;
        while (true){
            cin >> n;
            if (n == 0){
                break;
            }
            for (int i = 0; i < n; i++){
                cin >> paint[i];
            }
            cin >> gray;
            cout << Resolve(n, gray) << endl;
        }

        return 0;
    }

 

posted @ 2015-06-07 21:43  农民伯伯-Coding  阅读(544)  评论(0编辑  收藏  举报