Matlab 整数线性规划问题模型代码

整数线性规划问题的基本内容

整数线性规划解决的是自变量在一定的线性约束条件下,使得线性目标函数求得最大值或者最小值的问题。其中自变量只能取整数。特别地,当自变量只能取0或者1时,称之为 0-1 整数规划问题。

当目标函数为最小值时,上述问题可以写成如下形式:

\[\min z=\mathbf{F}^{T}\mathbf{X} \]

\[\text { s.t. } \left\{\begin{array}{l} {\mathbf{A}\mathbf{X} \leqslant \mathbf{B}} \\ {\mathbf{A}_{\mathrm{eq}} \mathbf{X}=\mathbf{B}_{\mathrm{eq}}} \\ {\mathbf{LB} \leqslant \mathbf{X} \leqslant \mathbf{UB}} \\\mathbf{X} \text{取整数} \end{array}\right. \]

其中

\(F\)线性目标函数系数向量

\(\mathbf{X}\) 为决策变量向量

\(\mathbf{A}\) 为线性不等式系数矩阵

\(\mathbf{B}\) 为线性不等式右端常数向量

\(\mathbf{A}_\mathrm{eq}\) 为线性等式系数矩阵

\(\mathbf{B}_\mathrm{eq}\) 为线性等式右端常数向量

\(\mathbf{L B}\) 为决策变量下界向量

\(\mathbf{U B}\) 为决策变量上界向量


Matlab模型代码

调用形式

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = intlinprog(F,intcon,A,B,Aeq,Beq,LB,UB) % 统一形式

输入变量

  • F为目标函数系数向量
  • intcon为整数变量的地址
  • A 为不等式约束系数矩阵(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)
  • B 为不等式右端常数向量(注意默认不等式方向为小于等于,若为大于等于,需要将其取相反数)
  • Aeq 为等式约束系数矩阵
  • Beq 为等式右端常数向量
  • LB 为决策变量下界向量
  • UB为决策变量上界向量

在调用时,输入参数不存在时,可以将其输入用 [] 空矩阵表示。

输出变量

  • X 为最优解
  • FVAL 为最优目标值
  • EXITFLAG 为运行结束标志,当等于1时,表示程序收敛于解 X;当等于0时,表示程序运行次数到达最大;当小于0时,说明情况较多
  • OUTPUT 为程序迭代次数
  • LAMBDA 为解X相关的Largrange乘子和影子价格

案例演示

目标函数与约束条件

\[\min z=-3 x_{1}-2 x_{2}-x_{3} \]

\[\text { s. t. }\left\{\begin{array}{l}{x_{1}+x_{2}+x_{3} \leq 7} \\ {4 x_{1}+2 x_{2}+x_{3}=12} \\ {x_{1}, x_{2} \geqslant 0} \\ {x_{3}=0\text{ or }1}\end{array}\right. \]

Matlab程序

clc,clear
f = [-3;-2;-1];
intcon = 3; % 整数变量的地址
A = ones(1,3);
B = 7;
Aeq = [4,2,1];
Beq = 12;
LB = zeros(3,1);
UB = [inf;inf;1]; % 只有x(3)取0或者1
[x,fval]= intlinprog(f,intcon,A,B,Aeq,Beq,LB,UB)

运行结果

x =

         0
    5.5000
    1.0000


fval =

  -12.0000
posted @ 2019-09-10 09:30  GShang  阅读(4307)  评论(0编辑  收藏  举报