首先说明一下这是一篇入门实战操作文章,本人亦是刚刚开始接触kafka,看了网上很多很多的文章,觉得自己也应当在搭建平台的过程中留下一些痕迹,总结一下遇到的问题和解决方法。
这篇文章主要是讲从零开始把服务器环境配好,然后用简单的java生产者和消费者客户端将整个流程跑通。
说一下为什么要使用kafka:实验室最近新起了一个研究方向,主要是挖掘用户的行为,基于机器学习的一些模型(SVM/LR/RF之类的)识别用户的状态,为用户提供实时的反馈。客户端会产生大量的用户行为数据和图像特征数据,服务端需要对这些数据进行实时计算并给出客户端反馈,与此同时这些数据需要持久化供模型训练使用。在这里kafka主要作为用户行为数据源,后面可能会使用Spark streaming进行online learning或者是先使用hbase,mongodb之类的nosql数据库存储数据再使用Spark进行offline learning,不过这是后话了。
有关kafka的背景知识,我觉得去官网上看看吧,别人的博文也一堆一堆的,这里主要讲讲怎么搭个简单的小集群。
本次搭建使用两台服务器(zookeeper由于选举机制推荐使用2*n+1台,不过这里是实验,所以先使用两台,等有闲置的服务器再加一台)
两台服务器系统均为Ubuntu 16.04 LTS desktop,Java环境为openjdk1.8.0_121,IP分别为192.168.1.37,192.168.1.199(在同一局域网内)
进入正题,我们先分别从kafka和zookeeper官网上分别下载各自程序包,解压,这里使用的是当前最新的zookeeper-3.4.9和kafka_2.11-0.10.1.1
1. 配置和启动zookeeper
1.1 配置文件
先拷贝一份sample配置,然后修改里面的参数,这里仅添加服务器列表,其余参数按默认的来(先按照最简单的来,以跑通为目标)
cp /zookeeper-3.4.9/conf/zoo_sample.cfg /zookeeper-3.4.9/conf/zoo.cfg
vim /zookeeper-3.4.9/conf/zoo.cfg
-
# The number of milliseconds of each tick
-
tickTime=2000
-
# The number of ticks that the initial
-
# synchronization phase can take
-
initLimit=10
-
# The number of ticks that can pass between
-
# sending a request and getting an acknowledgement
-
syncLimit=5
-
# the directory where the snapshot is stored.
-
# do not use /tmp for storage, /tmp here is just
-
# example sakes.
-
dataDir=/tmp/zookeeper
-
# the port at which the clients will connect
-
clientPort=2181
-
# the maximum number of client connections.
-
# increase this if you need to handle more clients
-
#maxClientCnxns=60
-
#
-
# Be sure to read the maintenance section of the
-
# administrator guide before turning on autopurge.
-
#
-
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
-
#
-
# The number of snapshots to retain in dataDir
-
#autopurge.snapRetainCount=3
-
# Purge task interval in hours
-
# Set to "0" to disable auto purge feature
-
#autopurge.purgeInterval=1
-
#服务器列表
-
server.1=192.168.1.37:20881:30881
-
server.2=192.168.1.199:20881:30881
这边说一下几个重要参数吧,clientPort是暴露给外部系统的(如kafka)
然后服务器列表中的每一条格式为server.X=ip:portA:portB
X为每台服务器的标识符,portA表示该server与集群中的leader交互信息使用的端口,portB为选举leader使用的端口。
在我的搭建环境中,192.168.1.37为1号服务器,192.168.1.199为2号服务器。
1.2 配置myid
然后根据.cfg文件中的dataDir目录下(zookeeper存放数据),创建一个名为myid的文件,内容为id号
对于192.168.1.37这台机器而言,即:
echo 1 > /tmp/zookeeper/myid
1.3 启动zookeeper
那么现在就先启动192.168.1.37这台机器上的zookeeper,在zookeeper-3.4.9文件夹中,执行zkServer.sh脚本,便能在终端内看到运行信息
sudo bin/zkServer.sh start conf/zoo.cfg
2. 配置和启动Kafka Broker
2.1 配置Kafka Broker(192.168.1.37)
#...
broker.id=1
#...
############################# Socket Server Settings #############################
# The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
# FORMAT:
# listeners = security_protocol://host_name:port
# EXAMPLE:
# listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092
# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured. Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
#advertised.listeners=PLAINTEXT://your.host.name:9092
advertised.listeners=PLAINTEXT://192.168.1.37:9092
############################# Zookeeper #############################
# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=192.168.1.37:2181,192.168.1.199:2181
# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000
2.2 启动Kafka
bin/kafka-server-start.sh config/server.properties
2.3 创建Topic
bin/kafka-topics.sh --create --zookeeper 192.168.1.37:2181,192.168.1.199:2181 --replication-factor 2 --partitions 1 --topic test
--zookeeper是zookeeper服务器列表,--repication-factor是备份数量,--partitions是该topic的分区数量,--topic是创建的topic的名字。2.4 Java Producer客户端(官网搬运)
-
<dependency>
-
<groupId>org.apache.kafka</groupId>
-
<artifactId>kafka-clients</artifactId>
-
<version>0.10.1.0</version>
-
</dependency>
-
public class Main {
-
-
public static void main(String[] args) {
-
Properties props = new Properties();
-
props.put("bootstrap.servers", "192.168.1.199:9092,192.168.1.37:9092"); // broker list
-
props.put("acks", "all");
-
props.put("retries", 0);
-
props.put("batch.size", 16384);
-
props.put("linger.ms", 1);
-
props.put("buffer.memory", 33554432);
-
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
-
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
-
-
-
Producer<String, String> producer = new KafkaProducer<String, String>(props);
-
-
for(int i = 0; i < 10; i++) {
-
System.out.println(i);
-
// send record to topic 'test'
-
producer.send(new ProducerRecord<String, String>("test", "key"+ Integer.toString(i), "value" + Integer.toString(i)));
-
}
-
-
producer.close();
-
}
-
}
2.5 Java Consumer客户端(官网搬运)
-
public class Main {
-
-
public static void main(String[] args) {
-
// write your code here
-
Properties props = new Properties();
-
props.put("bootstrap.servers", "192.168.1.199:9092,192.168.1.37"); // broker list
-
props.put("group.id", "testGroup");
-
props.put("enable.auto.commit", "true");
-
props.put("auto.commit.interval.ms", "1000");
-
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
-
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
-
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props);
-
consumer.subscribe(Arrays.asList("test")); // subscribe "test" topic
-
while (true) {
-
ConsumerRecords<String, String> records = consumer.poll(100);
-
for (ConsumerRecord<String, String> record : records)
-
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
-
}
-
-
}
-
}
运行两个Java程序,在Consumer console中应该就能看见Producer程序所产生的信息。