POJ2961_kmp
Time Limit: 3000MS | Memory Limit: 30000KB | 64bit IO Format: %I64d & %I64u |
Description
For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as A K ,that is A concatenated K times, for some string A. Of course, we also want to know the period K.
Input
The input consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S.The second line contains the string S. The input file ends with a line, having the
number zero on it.
number zero on it.
Output
For each test case, output "Test case #" and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.
Sample Input
3 aaa 12 aabaabaabaab 0
Sample Output
Test case #1 2 2 3 3 Test case #2 2 2 6 2 9 3 12 4
__________________________________________________________________________________________
题目大意:求字符串的前缀中循环节的出现次数(大于1的)。
原理同上题一样,只是要注意next[]==-1时的判断。
__________________________________________________________________________________________
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 5 using namespace std; 6 const int maxl=1e6+10; 7 int t,l,cas=0; 8 char s[maxl]; 9 int next[maxl]; 10 void getnext() 11 { 12 next[0]=-1; 13 for(int j,i=1;i<l;i++) 14 { 15 j=next[i-1]; 16 while(s[i]!=s[j+1] && j>=0)j=next[j]; 17 next[i]=s[i]==s[j+1]?j+1:-1; 18 } 19 } 20 int main() 21 { 22 while(scanf("%d",&l)==1 && l!=0) 23 { 24 printf("Test case #%d\n",++cas); 25 scanf("%s",s); 26 getnext(); 27 for(int i=1;i<l;i++) 28 { 29 if(next[i]!=-1 && (i+1)%(i-next[i])==0)printf("%d %d\n",i+1,(i+1)/(i-next[i])); 30 } 31 printf("\n"); 32 } 33 return 0; 34 }