LOJ10013曲线
题目描述
明明做作业的时候遇到了n 个二次函数s_i(x)=ax^2+bx+c ,他突发奇想设计了一个新的函数 f(x)=max{s_i(x)},i=1,2,...,n。
明明现在想求这个函数在 [0,1000] 的最小值,要求精确到小数点后四位,四舍五入。
输入格式
输入包含 t 组数据,每组第一行一个整数n ;
接下来 n 行,每行 3 个整数 a,b,c ,用来表示每个二次函数的 3 个系数。注意:二次函数有可能退化成一次。
输出格式
每组数据输出一行,表示新函数 f(x) 的在区间 [0,1000] 上的最小值。精确到小数点后四位,四舍五入。
样例
样例输入
2
1
2 0 0
2
2 0 0
2 -4 2
样例输出
0.0000
0.5000
数据范围与提示
对于 50% 的数据,1<=n<=100;
对于 100% 的数据,1<=t<=10,1<=n<=1e5 ,1<=a<=100 ,1<=|b|<=5e3 ,0<=|c|<=5e3 。
___________________________________________
这个题目用到分治中的一种特殊形式,三分。
首先,题目的真正难点在于能够看出:n个函数的最大值构成的新函数仍然是一个开口向上的波谷。
然后就是三分了。三分用来求波谷的最小值(或波峰的最大值)
以求波谷的最小值为例:
求区间[l,r]上的最小值,首先把区间长度等分成三分,分割点为ll和rr
sf=(r-l)/3
ll=l+sf,rr=r-sf;
这样区间就变成了[l,ll,rr,r]四点分成的三份。
然后求ll和rr点对应的函数值,由于是波谷,那么谷底所在点可能有三个可能:
1、在[ll,rr]区间内,由于是波谷,开口向上,那么f[l]>f[ll],f[rr]<f[r],那么可以去掉[l,ll]和[rr,r]两个区间。
2、在[l,ll]区间内,由于是波谷,开口向上,那么f[ll]<f[rr]<f[r],那么可以去掉[ll,rr]和[rr,r]两个区间。
3、在[rr,r]区间内,由于是波谷,开口向上,那么f[l]>f[ll]>f[rr],那么可以去掉[l,ll]和[ll,rr]两个区间。。
那么综合上面三种情况,如果f[ll]>f[rr],那么谷底可能在中间区[ll,rr]或右侧区[rr,r],那么左侧[l,rr]去掉;如果f[ll]<f[rr],那么谷底可能在中间区[ll,rr]或左侧区[l,ll],那么右侧[rr,r]去掉.
___________________________________________
1 #include<bits/stdc++.h> 2 using namespace std; 3 const int maxn=1e5+10; 4 int a[maxn],b[maxn],c[maxn]; 5 int t,n; 6 double work(double x) 7 { 8 double rt=-1e9; 9 for(int i=1;i<=n;++i) 10 rt=max(rt,a[i]*x*x+b[i]*x+c[i]); 11 return rt; 12 } 13 int main() 14 { 15 scanf("%d",&t); 16 while(t--) 17 { 18 scanf("%d",&n); 19 for(int i=1;i<=n;++i) 20 scanf("%d%d%d",a+i,b+i,c+i); 21 double l=0,r=1000,ll,rr; 22 while(l+1e-10<r) 23 { 24 double sf=(r-l)/3; 25 ll=l+sf;rr=r-sf; 26 if(work(ll)<work(rr))r=rr; 27 else l=ll; 28 } 29 printf("%.4lf\n",work((l+r)/2)); 30 } 31 return 0; 32 }