Ordered Fractions
(1)求最小公倍数和最大公约数
欧几里得公式求最大公约数 gcd(a, b) = gcd(b, a mod b) (a > b)
最小公倍数 = a * b / gcd(a, b)
求出1-n的公倍数,然后遍历每个元素,是否符合条件,符合就输出~结果求1-160的公倍数溢出
(2)最终还是老实的逐个产生,然后排序,输出
(3)一下为USACO给的第二种解答,根据分数的产生规律
Here's a super fast solution from Russ:
We notice that we can start with 0/1 and 1/1 as our ``endpoints'' and recursively generate the middle points by adding numerators and denominators.
0/1 1/1 1/2 1/3 2/3 1/4 2/5 3/5 3/4 1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5
Each fraction is created from the one up to its right and the one up to its left. This idea lends itself easily to a recursion that we cut off when we go too deep.
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> int n; FILE *fout; /* print the fractions of denominator <= n between n1/d1 and n2/d2 */
//分数的排列像二叉树的分支,深度优先遍历的中序遍历 void genfrac(int n1, int d1, int n2, int d2) { if(d1+d2 > n) /* cut off recursion */ return; genfrac(n1,d1, n1+n2,d1+d2); fprintf(fout, "%d/%d\n", n1+n2, d1+d2); genfrac(n1+n2,d1+d2, n2,d2); } void main(void) { FILE *fin; fin = fopen("frac1.in", "r"); fout = fopen("frac1.out", "w"); assert(fin != NULL && fout != NULL); fscanf(fin, "%d", &n); fprintf(fout, "0/1\n"); genfrac(0,1, 1,1); fprintf(fout, "1/1\n"); }