当MongoDB遇见Spark
当MongoDB遇见Spark
2017.03.23 00:02* 字数 428 阅读 9260评论 10喜欢 9
适宜读者人群
- 正在使用Mongodb的开发者
传统Spark生态系统 和 MongoDB在Spark生态的角色
传统Spark生态系统
Spark生态系统
那么Mongodb作为一个database, 可以担任什么样的角色呢? 就是数据存储这部分, 也就是图中的黑色圈圈HDFS的部分, 如下图
用MongoDB替换HDFS后的Spark生态系统
Spark+Mongodb生态系统
为什么要用MongoDB替换HDFS
- 存储方式上, HDFS以文件为单位,每个文件64MB~128MB不等, 而MongoDB作为文档数据库则表现得更加细颗粒化
- MongoDB支持HDFS所没有的索引的概念, 所以在读取上更加快
- MongoDB支持的增删改功能比HDFS更加易于修改写入后的数据
- HDFS的响应级别为分钟, 而MongoDB通常是毫秒级别
- 如果现有数据库已经是MongoDB的话, 那就不用再转存一份到HDFS上了
- 可以利用MongoDB强大的Aggregate做数据的筛选或预处理
MongoDB Spark Connector介绍
- 支持读取和写入,即可以将计算后的结果写入MongoDB
- 将查询拆分为n个子任务, 如Connector会将一次match,拆分为多个子任务交给spark来处理, 减少数据的全量读取
MongoDB Spark 示例代码
计算用类型Type=1的message字符数并按userid进行分组
开发Maven dependency配置
这里用的是mongo-spark-connector_2.11 的2.0.0版本和spark的spark-core_2.11的2.0.2版本
<dependency>
<groupId>org.mongodb.spark</groupId>
<artifactId>mongo-spark-connector_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.0.2</version>
</dependency>
示例代码
import com.mongodb.spark._
import org.apache.spark.{SparkConf, SparkContext}
import org.bson._
val conf = new SparkConf()
.setMaster("local")
.setAppName("Mingdao-Score")
//同时还支持mongo驱动的readPreference配置, 可以只从secondary读取数据
.set("spark.mongodb.input.uri", "mongodb://xxx.xxx.xxx.xxx:27017,xxx.xxx.xxx:27017,xxx.xxx.xxx:27017/inputDB.collectionName")
.set("spark.mongodb.output.uri", "mongodb://xxx.xxx.xxx.xxx:27017,xxx.xxx.xxx:27017,xxx.xxx.xxx:27017/outputDB.collectionName")
val sc = new SparkContext(conf)
// 创建rdd
val originRDD = MongoSpark.load(sc)
// 构造查询
val dateQuery = new BsonDocument()
.append("$gte", new BsonDateTime(start.getTime))
.append("$lt", new BsonDateTime(end.getTime))
val matchQuery = new Document("$match", BsonDocument.parse("{\"type\":\"1\"}"))
// 构造Projection
val projection1 = new BsonDocument("$project", BsonDocument.parse("{\"userid\":\"$userid\",\"message\":\"$message\"}")
val aggregatedRDD = originRDD.withPipeline(Seq(matchQuery, projection1))
//比如计算用户的消息字符数
val rdd1 = aggregatedRDD.keyBy(x=>{
Map(
"userid" -> x.get("userid")
)
})
val rdd2 = rdd1.groupByKey.map(t=>{
(t._1, t._2.map(x => {
x.getString("message").length
}).sum)
})
rdd2.collect().foreach(x=>{
println(x)
})
//保持统计结果至MongoDB outputurl 所指定的数据库
MongoSpark.save(rdd2)
总结
MongoDB Connector 的文档只有基础的示例代码, 具体详情需要看GitHub中的example和部分源码
参考链接
小礼物走一走,来简书关注我
赞赏支持