快速傅里叶变换(FFT)

快速傅里叶变换(FFT)

2017年12月09日 20:09:51 爱玲姐姐 阅读数 2747更多

分类专栏: ACM 算法

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/jal517486222/article/details/78761188

快速傅里叶变换不是一种新的变换,而是傅里叶变换的一种快速算法,这个算法可以将普通的离散傅里叶变换(DFT)的时间复杂度O(n*n)降到O(n
log n),大大提高了傅里叶变换的速度。快速傅里叶变换算法的提出,使傅里叶变换在通信领域得到了极大地运用和发展。
在ACM中,快速傅里叶变换通常用于大数的乘法。当两个数大到连JAVA的BI都无法承受时,就该使用快速傅里叶算法了。该算法是将两个数,都写成多项式矩阵,然后对其进行离散傅里叶变换。通信领域有句很经典的话,叫做时域卷积,频域相乘。所以将两个数的多项式系数矩阵进行离散傅里叶变换后,就可以对其进行直接相乘了。将相乘后得结果再进行傅里叶逆变换(DTFT)。

######我之前怎么也无法理解快速傅里叶算法,因为当时觉得太复杂了太难了,看都看不进去。但是,由于我的专业是电子信息工程,所以无可避免地会在各个专业课上与傅里叶变换碰面。就在上一周,我们的数字信号处理老师,花了好几节课的时间,给我们讲解了快速傅里叶算法,我当时听得很认真,并自认为听懂了。但是,当我想用自己脑子里的快速傅里叶算法求解大数相乘的题目时,却发现无从下手。我根本就不知道怎么去运用它。当时我就在想,这个算法我必须掌握它,不仅仅是因为它会出现在ACM中,更是因为它在我的专业上也占据了极其重要的地位。如果我连傅里叶变换都不会,那以后还有什么脸说自己是电子信息专业的。于是乎,我花了两天的时间,查资料,终于搞懂了这个强大的算法。我发现有些大神写的关于FFT的文章确实非常不错,清晰易懂,我自己也收藏了,推荐给大家,大家一起学习。


超级易懂的傅里叶变换


快速傅里叶变换(FFT)


####JAVA代码

import java.util.Arrays;
import java.util.Scanner;
import java.util.Vector;

/**
 * Created by jal on 2017/12/6 0006.
 */
public class DIT_FFT {
    private static int maxn;
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        String numstr1 = scanner.next();
        String numstr2 = scanner.next();
        int len =numstr1.length()+numstr2.length();
        maxn = 0;
        double temp = log2(len);
        double floortemp = Math.floor(temp);
        if(floortemp == temp){
            maxn = len;
        }else {
            maxn = (int)Math.pow(2,floortemp+1);
        }
        Complex []arra = createArray(maxn);
        Complex []arrb =createArray(maxn);
        Complex []arrc =createArray(maxn);
        Complex []arrA = createArray(maxn);
        Complex []arrB = createArray(maxn);
        Complex []arrC = createArray(maxn);

        char []a = numstr1.toCharArray();
        int j = 0;
        for(int i = a.length - 1; i >= 0; i--){
            arra[j++] = new Complex(a[i] - '0');
        }
        j = 0;
        char []b = numstr2.toCharArray();
        for(int i = b.length - 1; i >= 0; i--){
            arrb[j++] = new Complex(b[i] - '0');
        }
        //System.out.println(Arrays.toString(arra));

        //invert(arra);



        arrA = fft(arra);
        System.out.println(Arrays.toString(arrA));
        //invert(arrb);

        arrB = fft(arrb);
        //System.out.println(Arrays.toString(arrB));
        for(int i = 0; i < arrC.length; i++){
            arrC[i] = arrA[i].times(arrB[i]);
        }
        //System.out.println(Arrays.toString(arrC));
        arrc = ifft(arrC);
        Vector<Integer> vector = new Vector<>();
        vector = toIntOfString(arrc);
        String str = "";
        char vectorCHar[] = new char[vector.size()];
        for(int i = 0; i < vectorCHar.length; i++){
            vectorCHar[i] = (char)(vector.get(i) + '0');
        }
        str =String.valueOf(vectorCHar);
        str = new StringBuffer(str).reverse().toString();
        //System.out.println("str:"+str);
        str = trim(str);
        System.out.println(str);

    }
    private static String trim(String value) {

        int len = value.length();
        int st = 0;
        char[] val = value.toCharArray();    /* avoid getfield opcode */

        while ((st < len) && (val[st] <= '0')) {
            st++;
        }
//            while ((st < len) && (val[len - 1] <= ' ')) {
//                len--;
//            }
        return value.substring(st, len);

    }
    private static Vector<Integer> toIntOfString(Complex[] arrc) {
        Vector<Integer> result = new Vector<>();
        int n = arrc.length;
        int arrayTemp [] = new int[n+1];
        for(int i = 0; i < arrc.length; i++){
            arrayTemp[i] = (int)arrc[i].re();
        }
        int i;
        arrayTemp[n] = 0;
        for(i = 0; i < n; i++){
            result.add(arrayTemp[i]%10);
            arrayTemp[i+1] += arrayTemp[i] / 10;
        }
        int t = arrayTemp[n];
        while(t > 0){
            result.add(t % 10);
            t/= 10;
        }
        return result;
    }

    private static Complex[] ifft(Complex[] arrC) {
        int n = arrC.length;
        Complex arrayResult[] = new Complex[n];
        for(int i = 0; i < arrC.length; i++){
            arrC[i] = arrC[i].conjugate();
        }
        arrayResult= fft(arrC);
        for(int i = 0; i < arrayResult.length; i++){
            arrayResult[i] = arrayResult[i].conjugate().divides(new Complex(n));
        }
        return arrayResult;
    }

    private static Complex[] fft(Complex[] arrA) {
        int N = arrA.length;
        if(N == 1){
            return arrA;
        }
        Complex [] arrayEven = new Complex[N/2];
        Complex [] arrayOdd = new Complex[N/2];
        for(int i = 0; i < arrayEven.length; i++){
            arrayEven[i] = arrA[2*i];
            arrayOdd[i] = arrA[2*i+1];
        }
        arrayEven = fft(arrayEven);
        arrayOdd = fft(arrayOdd);
        Complex[]arrayResult = new Complex[N];
        for(int i = 0; i < N/2; i++){
            Complex W = new Complex(0,-2*Math.PI*i/N).exp();
            arrayResult[i] = arrayEven[i].plus(arrayOdd[i].times(W));
            arrayResult[i+N/2] = arrayEven[i].minus(arrayOdd[i].times(W));
        }
        return arrayResult;
    }

    private static  void bit_reverse_swap(Complex [] a) {
        int n = a.length;
        for (int i = 1, j = n >> 1, k; i < n - 1; ++i) {
            if (i < j) swap(a,i,j);
            // tricky
            for (k = n >> 1; j >= k; j -= k, k >>= 1)  // inspect the highest "1"
                ;
            j += k;
        }
    }

    private static void invert(Complex[] arra) {
        int n = (int)log2(maxn);
        for(int i = 0; i < arra.length; i++){
            String temp = Integer.toBinaryString(i);
            temp = new StringBuffer(temp).reverse().toString();
            int len = n - temp.length();
            char [] zeros = new char[len];
            Arrays.fill(zeros,'0');
            temp+=String.valueOf(zeros);

            int j = Integer.valueOf(temp,2);
            System.out.println("i:" + i +"j:" + j);
            if(j>i){
                swap(arra,i,j);
            }
        }
    }

    private static void swap(Complex[] arra, int i, int j) {
        Complex tmp = arra[i];
        arra[i] = arra[j];
        arra[j] = tmp;
    }
    private static Complex[] createArray(int maxn) {
        Complex[] result =new Complex[maxn];
        for(int i=0;i<maxn;i++)
            result[i]=new Complex(0,0);
        return result;
    }

    public static double log2(int n){
        return Math.log(n)/Math.log(2);
    }
}


/******************************************************************************
 *  Compilation:  javac Complex.java
 *  Execution:    java Complex
 *  Dependencies: StdOut.java
 *
 *  Data type for complex numbers.
 *
 *  The data type is "immutable" so once you create and initialize
 *  a Complex object, you cannot change it. The "final" keyword
 *  when declaring re and im enforces this rule, making it a
 *  compile-time error to change the .re or .im fields after
 *  they've been initialized.
 *
 *  % java Complex
 *  a            = 5.0 + 6.0i
 *  b            = -3.0 + 4.0i
 *  Re(a)        = 5.0
 *  Im(a)        = 6.0
 *  b + a        = 2.0 + 10.0i
 *  a - b        = 8.0 + 2.0i
 *  a * b        = -39.0 + 2.0i
 *  b * a        = -39.0 + 2.0i
 *  a / b        = 0.36 - 1.52i
 *  (a / b) * b  = 5.0 + 6.0i
 *  conj(a)      = 5.0 - 6.0i
 *  |a|          = 7.810249675906654
 *  tan(a)       = -6.685231390246571E-6 + 1.0000103108981198i
 *
 ******************************************************************************/

/**
 *  The {@code Complex} class represents a complex number.
 *  Complex numbers are immutable: their values cannot be changed after they
 *  are created.
 *  It includes methods for addition, subtraction, multiplication, division,
 *  conjugation, and other common functions on complex numbers.
 *  <p>
 *  For additional documentation, see <a href="https://algs4.cs.princeton.edu/99scientific">Section 9.9</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
class Complex {
    private double re;   // the real part
    private  double im;   // the imaginary part

    /**
     * Initializes a complex number from the specified real and imaginary parts.
     *
     * @param real the real part
     * @param imag the imaginary part
     */
    public Complex(double real, double imag) {
        re = real;
        im = imag;
    }

    public Complex(double re) {
        this.re = re;
        this.im = 0;
    }

    /**
     * Returns a string representation of this complex number.
     *
     * @return a string representation of this complex number,
     *         of the form 34 - 56i.
     */
    public String toString() {
        if (im == 0) return re + "";
        if (re == 0) return im + "i";
        if (im <  0) return re + " - " + (-im) + "i";
        return re + " + " + im + "i";
    }

    /**
     * Returns the absolute value of this complex number.
     * This quantity is also known as the <em>modulus</em> or <em>magnitude</em>.
     *
     * @return the absolute value of this complex number
     */
    public double abs() {
        return Math.hypot(re, im);
    }

    /**
     * Returns the phase of this complex number.
     * This quantity is also known as the <em>angle</em> or <em>argument</em>.
     *
     * @return the phase of this complex number, a real number between -pi and pi
     */
    public double phase() {
        return Math.atan2(im, re);
    }

    /**
     * Returns the sum of this complex number and the specified complex number.
     *
     * @param  that the other complex number
     * @return the complex number whose value is {@code (this + that)}
     */
    public Complex plus(Complex that) {
        double real = this.re + that.re;
        double imag = this.im + that.im;
        return new Complex(real, imag);
    }

    /**
     * Returns the result of subtracting the specified complex number from
     * this complex number.
     *
     * @param  that the other complex number
     * @return the complex number whose value is {@code (this - that)}
     */
    public Complex minus(Complex that) {
        double real = this.re - that.re;
        double imag = this.im - that.im;
        return new Complex(real, imag);
    }

    /**
     * Returns the product of this complex number and the specified complex number.
     *
     * @param  that the other complex number
     * @return the complex number whose value is {@code (this * that)}
     */
    public Complex times(Complex that) {
        double real = this.re * that.re - this.im * that.im;
        double imag = this.re * that.im + this.im * that.re;
        return new Complex(real, imag);
    }

    /**
     * Returns the product of this complex number and the specified scalar.
     *
     * @param  alpha the scalar
     * @return the complex number whose value is {@code (alpha * this)}
     */
    public Complex scale(double alpha) {
        return new Complex(alpha * re, alpha * im);
    }

    /**
     * Returns the product of this complex number and the specified scalar.
     *
     * @param  alpha the scalar
     * @return the complex number whose value is {@code (alpha * this)}
     * @deprecated Replaced by {@link #scale(double)}.
     */
    @Deprecated
    public Complex times(double alpha) {
        return new Complex(alpha * re, alpha * im);
    }

    /**
     * Returns the complex conjugate of this complex number.
     *
     * @return the complex conjugate of this complex number
     */
    public Complex conjugate() {
        return new Complex(re, -im);
    }

    /**
     * Returns the reciprocal of this complex number.
     *
     * @return the complex number whose value is {@code (1 / this)}
     */
    public Complex reciprocal() {
        double scale = re*re + im*im;
        return new Complex(re / scale, -im / scale);
    }

    /**
     * Returns the real part of this complex number.
     *
     * @return the real part of this complex number
     */
    public double re() {
        return re;
    }

    /**
     * Returns the imaginary part of this complex number.
     *
     * @return the imaginary part of this complex number
     */
    public double im() {
        return im;
    }

    /**
     * Returns the result of dividing the specified complex number into
     * this complex number.
     *
     * @param  that the other complex number
     * @return the complex number whose value is {@code (this / that)}
     */
    public Complex divides(Complex that) {
        return this.times(that.reciprocal());
    }

    /**
     * Returns the complex exponential of this complex number.
     *
     * @return the complex exponential of this complex number
     */
    public Complex exp() {
        return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
    }

    /**
     * Returns the complex sine of this complex number.
     *
     * @return the complex sine of this complex number
     */
    public Complex sin() {
        return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
    }

    /**
     * Returns the complex cosine of this complex number.
     *
     * @return the complex cosine of this complex number
     */
    public Complex cos() {
        return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
    }

    /**
     * Returns the complex tangent of this complex number.
     *
     * @return the complex tangent of this complex number
     */
    public Complex tan() {
        return sin().divides(cos());
    }



}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430

####C++代码

#include <complex>
#include <vector>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstdio>
using namespace std;
double log2(int n){
    return log(n)/log(2);
}
const int MAXN = 1 << 20;
complex<double> arra[MAXN],arrb[MAXN],arrC[MAXN];
complex<double>* arrA;
complex<double>* arrB;//,arrC[MAXN];
complex<double>* arrc;
const double PI = 3.141592653;
complex<double>* DIT_FFT(complex<double>* arr,int len){
    if(len == 1)return arr;
    complex<double> *arrayEven = new complex<double>[len/2];
    complex<double> *arrayOdd = new complex<double>[len/2];
    for(int i = 0; i < len/2; i++){
        arrayEven[i] = arr[2*i];
        arrayOdd[i] = arr[2*i+1];
    }
    arrayEven = DIT_FFT(arrayEven,len/2);
    arrayOdd = DIT_FFT(arrayOdd,len/2);
    complex<double> *arrayResult = new complex<double>[len];
    for(int i = 0; i < len/2; i++){
        //TODO
        //help me
        //help me
        // what is 'W' ?
        complex<double> W = exp(complex<double>(0,-2*PI *i / len));//ecomplex<double>(cos(-2*PI *i / len),sin(-2*PI *i / len));
        cout<<"W:"<<W<<endl;
        arrayResult[i] = arrayEven[i] + arrayOdd[i] * W;
        arrayOdd[i + len/2] = arrayEven[i] - arrayOdd[i] * W;
    }
    return arrayResult;
}

complex<double>* IFFT(complex<double>*arrC,int len){
    int n = len;
    complex<double>* arrayResult = new complex<double>[len];
    for(int i = 0; i < len; i++){
        arrC[i] = conj(arrC[i]);
    }
    arrayResult= DIT_FFT(arrC,len);
    for(int i = 0; i < len; i++){
        arrayResult[i] = conj(arrayResult[i]);
        arrayResult[i]/=n;
    }
    return arrayResult;

}
int main(){

    string str1,str2;
    cin>>str1>>str2;
    int len = str1.size() + str2.size();
    int maxn = 0;
    double floortemp =log2(len);
    if(floortemp == floor(floortemp)){
        maxn = len;
    }
    else{
        maxn = pow(2,(int)(floor(floortemp) + 1) );
    }

    for(int i = str1.size() - 1; i >= 0; i--){
        arra[i] = complex<double>(str1[i]-'0',0);
    }
    for(int i = str1.size() - 1; i >= 0; i--){
        arrb[i] = complex<double>(str2[i]-'0',0);
    }
    arrA = DIT_FFT(arra,maxn);
    arrB = DIT_FFT(arrb,maxn);
    for(int i= 0; i < maxn; i++){
        arrC[i] = arrA[i]*arrB[i];
    }
    arrc = IFFT(arrC,len);
    vector<int>v;
    for(int i = 0; i < maxn;i++){
        v.push_back((int)arrc[i].real());
    }

}
posted @ 2019-09-18 19:25  grj001  阅读(294)  评论(0编辑  收藏  举报