1053. Path of Equal Weight (30)
Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to Lis defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.
Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
Figure 1
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.
Output Specification:
For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.
Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bifor i=1, ... k, and Ak+1 > Bk+1.
Sample Input:
20 9 24 10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2 00 4 01 02 03 04 02 1 05 04 2 06 07 03 3 11 12 13 06 1 09 07 2 08 10 16 1 15 13 3 14 16 17 17 2 18 19
Sample Output:
10 5 2 7 10 4 10 10 3 3 6 2 10 3 3 6 2
#include<iostream> #include<vector> #include<cstdio> #include<cstring> #include<algorithm> #include<map> using namespace std; #define max 102 vector<int>vt[max]; vector<int>result[max]; vector<int>weight; int sweight; int t=0; vector<int>curpath; void dfs(int s,int len){ if(vt[s].empty())return; int tmplen = len; int size=vt[s].size(); for(int i=0;i<size;i++){ tmplen=len + weight[vt[s][i]]; if(tmplen<sweight){ vector<int>tmp; tmp=curpath; curpath.push_back(weight[vt[s][i]]); dfs(vt[s][i],tmplen); curpath=tmp; }else if(tmplen==sweight && vt[vt[s][i]].empty()){ result[t]=curpath; result[t].push_back(weight[vt[s][i]]); t++; } } } bool cmp(vector<int>a,vector<int>b){ int sizea=a.size(); int sizeb=b.size(); int minSize=sizea<sizeb?sizea:sizeb; for(int i=0;i<minSize;i++){ if(a[i]>b[i])return true; else if(a[i]<b[i]) return false; } if(sizea==minSize){ return false; }else { return true; } } int main(){ int n,m; scanf("%d%d%d",&n,&m,&sweight); int i,j; int val,id,k; weight.resize(n); for(i=0;i<n;i++){ scanf("%d",&weight[i]); } for(i=0;i<m;i++){ scanf("%d%d",&id,&k); for(j=0;j<k;j++){ scanf("%d",&val); vt[id].push_back(val); } } if(m==0){ if(weight[0]==sweight)printf("%d\n",weight[0]); return 0; } curpath.push_back(weight[0]); dfs(0,weight[0]); sort(result,result+t,cmp); for(i=0;i<t;i++){ int size=result[i].size(); printf("%d",result[i][0]); for(j=1;j<size;j++){ printf(" %d",result[i][j]); } printf("\n"); } return 0; }