1069. The Black Hole of Numbers (20)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include<iostream> #include<algorithm> #include<cstring> #include<cstdio> using namespace std; int a[5],val; bool cmp(int a,int b){ return a>b; } int main(){ scanf("%d",&val); int tmp = val; while(1){ a[0]=val/1000; val=val-a[0]*1000; a[1]=val/100; val=val-a[1]*100; a[2]=val/10; a[3]=val-a[2]*10; if(a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3]){ printf("%04d - %04d = 0000\n",tmp,tmp); return 0; } sort(a,a+4,cmp); int val1=0; int val2=0; for(int i=3;i>=0;i--){ val1=val1*10+a[i]; val2=val2*10+a[3-i]; } val=val2-val1; printf("%04d - %04d = %04d\n",val2,val1,val); if(val==6174){ break; } } return 0; }